%I #27 Feb 04 2019 07:35:55
%S 15,30,21,42,119,33,35,78,209,133,51,57,299,65,138,217,77,399,87,93,
%T 295,105,210,111,222,230,258,266,141,143,451,155,161,330,505,177,183,
%U 185,195,390,201,203,215,1342,231,462,237,721,1209,255,518,267,273,546
%N For any n > 4: let p be the n-th prime number; a(n) is the least squarefree p-smooth integer congruent to 4 modulo p.
%C This sequence is well-defined per the work of Booker and Pomerance.
%C The number 4 in the congruence in the name could be replaced by any value; this number was chosen for being the first integer that is not squarefree.
%H Rémy Sigrist, <a href="/A322370/b322370.txt">Table of n, a(n) for n = 5..10000</a>
%H Andrew R. Booker, Carl Pomerance, <a href="https://arxiv.org/abs/1607.01557">Squarefree smooth numbers and Euclidean prime generators</a>, arXiv:1607.01557 [math.NT], 2016-2017.
%H Andrew R. Booker and Carl Pomerance, <a href="https://doi.org/10.1090/proc/13576">Squarefree smooth numbers and Euclidean prime generators</a>, Proceedings of the American Mathematical Society 145 (2017), 5035-5042.
%H Rémy Sigrist, <a href="/A322370/a322370.png">Colored scatterplot of (n, a(n)) for n = 5..1000000</a> (where the color is function of (a(n)-4)/A000040(n)).
%F a(n) = A261144(n, k) for some k in 1..2^n.
%e For n = 7:
%e - the 7th prime is 17,
%e - the first squarefree 17-smooth integers s, alongside (s-4) mod 17, are:
%e s 1 2 3 5 6 7 10 11 13 14 15 17 21
%e ------------ -- -- -- - - - -- -- -- -- -- -- --
%e (s-4) mod 17 14 15 16 1 2 3 6 7 9 10 11 13 0
%e - hence a(7) = 21.
%t a[n_] := Module[{p = Prime[n], k = 4}, While[! SquareFreeQ[k] || FactorInteger[k][[-1, 1]] > p, k += p; Continue[]]; k]; Array[a, 100, 5] (* _Amiram Eldar_, Dec 08 2018 *)
%o (PARI) a(n) = my (p=prime(n)); forstep (v=4, oo, p, if (issquarefree(v), my (f=factor(v)); if (f[#f~,1] <= p, return (v))))
%Y Cf. A000040, A005117, A261144.
%K nonn
%O 5,1
%A _Rémy Sigrist_, Dec 05 2018