Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Dec 21 2018 03:27:28
%S 1,11,490,60916,15745548,7477647372,5799397213200,6925325038489152,
%T 11958227405868674880,28853103567727115409600,
%U 93561657023119005869616000,398720531811315564754326938880,2174628314166392755825875267321600,14941853448103858870808931238617312000
%N Permanent of an n X n square matrix M(n) formed by writing the numbers 1, ..., n^2 successively forward and backward along the rows in zig-zag pattern.
%C M(n) is defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even.
%C det(M(1)) = 1, det(M(2)) = -5 and det(M(n)) = 0 for n > 2 (proved).
%C The trace of the matrix M(n) is A317614(n).
%H Vaclav Kotesovec, <a href="/A322277/b322277.txt">Table of n, a(n) for n = 1..35</a>
%e For n = 1 the matrix M(1) is
%e 1
%e with permanent a(1) = 1.
%e For n = 2 the matrix M(2) is
%e 1, 2
%e 4, 3
%e with permanent a(2) = 11.
%e For n = 3 the matrix M(3) is
%e 1, 2, 3
%e 6, 5, 4
%e 7, 8, 9
%e with permanent a(3) = 490.
%p with(LinearAlgebra):
%p a := n -> Permanent(Matrix(n, (i, j) -> 1-j+i*n+(-1+2*j-n)*modp(i,2))):
%p seq(a(n), n = 1 .. 20);
%t M[i_, j_, n_] := 1 - j + i n + (-1 + 2 j - n) Mod[i, 2]; a[n_] := Permanent[Table[M[i, j, n], {i, n}, {j, n}]]; Array[a, 20]
%o (PARI)
%o a(n) = matpermanent(matrix(n, n, i, j, if (i % 2, j + n*(i-1), n*i - j + 1)));
%o vector(20, n, a(n))
%Y Cf. A317614 (trace of matrix M(n)).
%Y Cf. A241016 (row sums of M matrices), A317617 (column sums of M matrices), A074147 (antidiagonals of M matrices).
%K nonn
%O 1,2
%A _Stefano Spezia_, Dec 01 2018