The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322274 Smallest multiplication factors f, prime or 1, for all b (mod 9240), coprime to 9240 (= 4*11#), so that b*f is a square mod 8, mod 3, mod 5, mod 7, and mod 11. 7

%I #24 Sep 11 2022 12:05:08

%S 1,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,

%T 103,107,109,113,127,131,113,19,29,79,157,67,167,1,173,179,181,71,193,

%U 197,31,211,389,103,83,181,233,239,241,463,59,257,263,269,271,277,281,283,1,173,131,283,311,97,53,443,331,193,107,61,257,239,1,103,277

%N Smallest multiplication factors f, prime or 1, for all b (mod 9240), coprime to 9240 (= 4*11#), so that b*f is a square mod 8, mod 3, mod 5, mod 7, and mod 11.

%C See sequence A322269 for further explanations. This sequence is related to A322269(5).

%C The sequence is periodic, repeating itself after phi(9240) terms. Its largest term is 1873, which is A322269(5). In order to satisfy the conditions, both f and b must be coprime to 9240. Otherwise, the product would be zero mod a prime <= 11.

%C The b(n) corresponding to each a(n) is A008365(n).

%C The first 28 entries are trivial: f=b, and then the product b*f naturally is a square modulo everything.

%H Hans Ruegg, <a href="/A322274/b322274.txt">Table of n, a(n) for n = 1..1920</a>

%e The 30th number coprime to 9240 is 139. a(30) is 19, because 19 is the smallest prime by which we can multiply 139, so that the product (139*19 = 2641) is a square mod 8, and modulo all primes up to 11.

%o (PARI)

%o QresCode(n, nPrimes) = {

%o code = bitand(n,7)>>1;

%o for (j=2, nPrimes,

%o x = Mod(n,prime(j));

%o if (issquare(x), code += (1<<j));

%o );

%o return (code);

%o }

%o QCodeArray(n) = {

%o totalEntries = 1<<(n+1);

%o f = vector(totalEntries);

%o f[totalEntries-3] = 1; \\ 1 always has the same code: ...111100

%o counter = 1;

%o forprime(p=prime(n+1), +oo,

%o code = QresCode(p, n);

%o if (f[code+1]==0,

%o f[code+1]=p;

%o counter += 1;

%o if (counter==totalEntries, return(f));

%o )

%o )

%o }

%o sequence(n) = {

%o f = QCodeArray(n);

%o primorial = prod(i=1, n, prime(i));

%o entries = eulerphi(4*primorial);

%o a = vector(entries);

%o i = 1;

%o forstep (x=1, 4*primorial-1, 2,

%o if (gcd(x,primorial)==1,

%o a[i] = f[QresCode(x, n)+1];

%o i += 1;

%o );

%o );

%o return(a);

%o }

%o \\ sequence(5) returns this sequence.

%o \\ Similarly, sequence(2) returns A322271, sequence(3) returns A322272, ... sequence(6) returns A322275.

%Y Cf. A322269, A322271, A322272, A322273, A322275, A008365.

%K nonn,fini,full

%O 1,2

%A _Hans Ruegg_, Dec 01 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 13:22 EDT 2024. Contains 372755 sequences. (Running on oeis4.)