login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322236
a(n) = A322237(n) / (n*(n+1)/2), where A322237(n) = [x^(n-1)] Product_{k=1..n} (k + x + k*x^2), for n >= 1.
7
1, 1, 4, 16, 126, 946, 11201, 125609, 1988645, 29865749, 592326527, 11181850967, 266546940947, 6069884741155, 169005305069771, 4510734458734443, 143664066858425883, 4399531515393236907, 157747037226275555718, 5453223770914252146978, 217372015577641986139848, 8374038291341888594002908, 367340884744321785348071011, 15606634300050239405862650475
OFFSET
1,3
LINKS
EXAMPLE
The irregular triangle A322235 formed from coefficients of x^k in Product_{m=1..n} (m + x + m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, 1;
2, 3, 5, 3, 2;
6, 11, 24, 23, 24, 11, 6;
24, 50, 131, 160, 215, 160, 131, 50, 24;
120, 274, 825, 1181, 1890, 1815, 1890, 1181, 825, 274, 120;
720, 1764, 5944, 9555, 17471, 19866, 24495, 19866, 17471, 9555, 5944, 1764, 720;
5040, 13068, 48412, 85177, 173460, 223418, 313628, 302619, 313628, 223418, 173460, 85177, 48412, 13068, 5040;
40320, 109584, 440684, 834372, 1860153, 2642220, 4120122, 4521924, 5320667, 4521924, 4120122, 2642220, 1860153, 834372, 440684, 109584, 40320; ...
in which the central terms equal A322238.
RELATED SEQUENCES.
Note that the terms in the secondary diagonal (A322237), beginning
[1, 3, 24, 160, 1890, 19866, 313628, 4521924, 89489025, 1642616195, ...]
may be divided by triangular numbers to obtain this sequence
[1, 1, 4, 16, 126, 946, 11201, 125609, 1988645, 29865749, 592326527, ...].
MATHEMATICA
a[n_] := SeriesCoefficient[Product[k + x + k x^2, {k, 1, n}], {x, 0, n-1}]/ (n(n+1)/2);
Array[a, 24] (* Jean-François Alcover, Dec 28 2018 *)
PROG
(PARI) {T(n, k) = polcoeff( prod(m=1, n, m + x + m*x^2) +x*O(x^k), k)}
/* Print the irregular triangle */
for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))
/* Print this sequence */
for(n=1, 30, print1( T(n, n-1)/(n*(n+1)/2), ", "))
CROSSREFS
Sequence in context: A306561 A226102 A094356 * A318152 A358083 A323552
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 15 2018
STATUS
approved