This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322231 E.g.f.: C(x,k) = 1 + Integral S(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1, as a triangle of coefficients read by rows. 4

%I

%S 1,1,0,1,8,0,1,88,136,0,1,816,6240,3968,0,1,7376,195216,513536,176896,

%T 0,1,66424,5352544,39572864,51880064,11184128,0,1,597864,139127640,

%U 2458228480,8258202240,6453433344,951878656,0,1,5380832,3535586112,137220256000,994697838080,1889844670464,978593947648,104932671488,0,1,48427552,88992306208,7233820923904,102950036177920,398800479698944,485265505927168,178568645312512,14544442556416,0

%N E.g.f.: C(x,k) = 1 + Integral S(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1, as a triangle of coefficients read by rows.

%C Equals a row reversal of triangle A325222.

%C Compare to cn(x,k) = 1 - Integral sn(x,k)*dn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions (see triangle A060627).

%C Compare also to Michael Pawellek's generalized elliptic functions.

%H Paul D. Hanna, <a href="/A322231/b322231.txt">Table of n, a(n) for n = 0..860 terms of this triangle read by rows 0..40.</a>

%F E.g.f. C = C(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n) * k^(2*j) / (2*n)!, along with related series S = S(x,k) and D = D(x,k), satisfies:

%F (1a) S = Integral C*D^2 dx.

%F (1b) C = 1 + Integral S*D^2 dx.

%F (1c) D = 1 + k^2 * Integral S*C*D dx.

%F (2a) C^2 - S^2 = 1.

%F (2b) D^2 - k^2*S^2 = 1.

%F (3a) C + S = exp( Integral D^2 dx ).

%F (3b) D + k*S = exp( k * Integral C*D dx ).

%F (4a) S = sinh( Integral D^2 dx ).

%F (4b) S = sinh( k * Integral C*D dx ) / k.

%F (4c) C = cosh( Integral D^2 dx ).

%F (4d) D = cosh( k * Integral C*D dx ).

%F (5a) d/dx S = C*D^2.

%F (5b) d/dx C = S*D^2.

%F (5c) d/dx D = k^2 * S*C*D.

%F From _Paul D. Hanna_, Mar 31 2019, Apr 20 2019 (Start):

%F Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then

%F (6a) S = -i * sn( i * Integral D dx, k),

%F (6b) C = cn( i * Integral D dx, k),

%F (6c) D = dn( i * Integral D dx, k).

%F (7a) S = sc( Integral D dx, k') = sn(Integral D dx, k')/cn(Integral D dx, k'),

%F (7b) C = nc( Integral D dx, k') = 1/cn(Integral D dx, k'),

%F (7c) D = dc( Integral D dx, k') = dn(Integral D dx, k')/cn(Integral D dx, k'). (End)

%F Row sums equal ( (2*n)!/(n!*2^n) )^2 = A001818(n), the squares of the odd double factorials.

%F Diagonal T(n+1,n) = 2^n*A002105(n+1), for n>=0, where A002105 gives the reduced tangent numbers.

%e E.g.f.: C(x,k) = 1 + x^2/2! + (8*k^2 + 1)*x^4/4! + (136*k^4 + 88*k^2 + 1)*x^6/6! + (3968*k^6 + 6240*k^4 + 816*k^2 + 1)*x^8/8! + (176896*k^8 + 513536*k^6 + 195216*k^4 + 7376*k^2 + 1)*x^10/10! + (11184128*k^10 + 51880064*k^8 + 39572864*k^6 + 5352544*k^4 + 66424*k^2 + 1)*x^12/12! + (951878656*k^12 + 6453433344*k^10 + 8258202240*k^8 + 2458228480*k^6 + 139127640*k^4 + 597864*k^2 + 1)*x^14/14! + ...

%e such that C(x,k)^2 - S(x,k)^2 = 1.

%e This triangle of coefficients T(n,j) of x^(2*n)*k^(2*j)/(2*n)! in e.g.f. C(x,k) begins:

%e 1;

%e 1, 0;

%e 1, 8, 0;

%e 1, 88, 136, 0;

%e 1, 816, 6240, 3968, 0;

%e 1, 7376, 195216, 513536, 176896, 0;

%e 1, 66424, 5352544, 39572864, 51880064, 11184128, 0;

%e 1, 597864, 139127640, 2458228480, 8258202240, 6453433344, 951878656, 0;

%e 1, 5380832, 3535586112, 137220256000, 994697838080, 1889844670464, 978593947648, 104932671488, 0;

%e 1, 48427552, 88992306208, 7233820923904, 102950036177920, 398800479698944, 485265505927168, 178568645312512, 14544442556416, 0; ...

%e RELATED SERIES.

%e The related series S(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts

%e S(x,k) = x + (2*k^2 + 1)*x^3/3! + (16*k^4 + 28*k^2 + 1)*x^5/5! + (272*k^6 + 1032*k^4 + 270*k^2 + 1)*x^7/7! + (7936*k^8 + 52736*k^6 + 36096*k^4 + 2456*k^2 + 1)*x^9/9! + (353792*k^10 + 3646208*k^8 + 4766048*k^6 + 1035088*k^4 + 22138*k^2 + 1)*x^11/11! + (22368256*k^12 + 330545664*k^10 + 704357760*k^8 + 319830400*k^6 + 27426960*k^4 + 199284*k^2 + 1)*x^13/13! + ...

%e The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts

%e D(x,k) = 1 + k^2*x^2/2! + (5*k^4 + 4*k^2)*x^4/4! + (61*k^6 + 148*k^4 + 16*k^2)*x^6/6! + (1385*k^8 + 6744*k^6 + 2832*k^4 + 64*k^2)*x^8/8! + (50521*k^10 + 410456*k^8 + 383856*k^6 + 47936*k^4 + 256*k^2)*x^10/10! + (2702765*k^12 + 32947964*k^10 + 54480944*k^8 + 17142784*k^6 + 780544*k^4 + 1024*k^2)*x^12/12! + (199360981*k^14 + 3402510924*k^12 + 8760740640*k^10 + 5199585280*k^8 + 686711040*k^6 + 12555264*k^4 + 4096*k^2)*x^14/14! + ...

%o (PARI) N=10;

%o {S=x;C=1;D=1; for(i=1,2*N, S = intformal(C*D^2 +O(x^(2*N+1))); C = 1 + intformal(S*D^2); D = 1 + k^2*intformal(S*C*D));}

%o for(n=0,N, for(j=0,n, print1( (2*n)!*polcoeff(polcoeff(C,2*n,x),2*j,k),", ")) ;print(""))

%Y Cf. A322230 (S), A322232 (D), A001818 (row sums), A002105.

%Y Cf. A325222 (row reversal).

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Dec 14 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 04:15 EST 2019. Contains 329885 sequences. (Running on oeis4.)