Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Dec 26 2018 10:40:34
%S 1,1,1,-1,2,3,-3,-3,2,6,11,-12,-21,12,11,-6,24,50,-61,-140,75,140,-61,
%T -50,24,120,274,-375,-1011,540,1475,-540,-1011,375,274,-120,720,1764,
%U -2696,-8085,4479,15456,-5005,-15456,4479,8085,-2696,-1764,720,5040,13068,-22148,-71639,42140,169266,-50932,-221389,50932,169266,-42140,-71639,22148,13068,-5040,40320,109584,-204436,-699804,442665,1969380,-575310,-3176172,593523,3176172,-575310,-1969380,442665,699804,-204436,-109584,40320,362880,1026576,-2093220,-7488928,5124105,24465321,-7192395,-46885278,7343325,57764619,-7343325,-46885278,7192395,24465321,-5124105,-7488928,2093220,1026576,-362880
%N Triangle, read by rows, each row n being defined by g.f. Product_{k=1..n} (k + x - k*x^2), for n >= 0.
%H Paul D. Hanna, <a href="/A322225/b322225.txt">Table of n, a(n) for n = 0..5040, as a flattened triangle of rows 0..70.</a>
%F Each row sums to 1.
%F Left and right borders equal n! and (-1)^n*n!, respectively.
%e This irregular triangle formed from coefficients of x^k in Product_{m=1..n} (m + x - m*x^2), for n >= 0, k = 0..2*n, begins
%e 1;
%e 1, 1, -1;
%e 2, 3, -3, -3, 2;
%e 6, 11, -12, -21, 12, 11, -6;
%e 24, 50, -61, -140, 75, 140, -61, -50, 24;
%e 120, 274, -375, -1011, 540, 1475, -540, -1011, 375, 274, -120;
%e 720, 1764, -2696, -8085, 4479, 15456, -5005, -15456, 4479, 8085, -2696, -1764, 720;
%e 5040, 13068, -22148, -71639, 42140, 169266, -50932, -221389, 50932, 169266, -42140, -71639, 22148, 13068, -5040;
%e 40320, 109584, -204436, -699804, 442665, 1969380, -575310, -3176172, 593523, 3176172, -575310, -1969380, 442665, 699804, -204436, -109584, 40320; ...
%e in which the central terms equal A322228.
%e RELATED SEQUENCES.
%e Note that the terms in the secondary diagonal A322227 in the above triangle
%e [1, 3, -12, -140, 540, 15456, -50932, -3176172, 7343325, 1053842295, ...]
%e may be divided by triangular numbers to obtain A322226:
%e [1, 1, -2, -14, 36, 736, -1819, -88227, 163185, 19160769, -15294993, ...].
%t row[n_] := CoefficientList[Product[k+x-k*x^2, {k, 1, n}] + O[x]^(2n+1), x];
%t Table[row[n], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, Dec 26 2018 *)
%o (PARI) {T(n, k) = polcoeff( prod(m=1, n, m + x - m*x^2) +x*O(x^k), k)}
%o /* Print the irregular triangle */
%o for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))
%Y Cf. A322226, A322227, A322228.
%Y Cf. A322235 (variant).
%K sign,tabf
%O 0,5
%A _Paul D. Hanna_, Dec 15 2018