login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322215
G.f.: P(x,y) = Product_{n>=1} (1 - (x^n + y^n))^3, where P(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k, as a square table of coefficients T(n,k) read by antidiagonals.
2
1, -3, -3, 0, 6, 0, 5, 6, 6, 5, 0, -9, -12, -9, 0, 0, -9, -6, -6, -9, 0, -7, -9, 6, -6, 6, -9, -7, 0, 12, 12, 27, 27, 12, 12, 0, 0, 12, 24, 30, 6, 30, 24, 12, 0, 0, 12, -12, -23, -24, -24, -23, -12, 12, 0, 9, 12, 0, 3, -15, -12, -15, 3, 0, 12, 9, 0, -15, -36, -54, -60, -60, -60, -60, -54, -36, -15, 0, 0, -15, -24, -23, -30, -9, -12, -9, -30, -23, -24, -15, 0, 0, -15, -6, -12, 51, 57, 54, 54, 57, 51, -12, -6, -15, 0, 0, -15, 6, 24, 66, 33, 69, 96, 69, 33, 66, 24, 6, -15, 0, -11, -15, 24, 49, 87, 69, 127, 93, 93, 127, 69, 87, 49, 24, -15, -11
OFFSET
0,2
COMMENTS
Compare: Product_{n>=1} (1-x^n)^3 = Sum_{n>=0} (-1)^n * (2*n+1) * x^(n*(n+1)/2).
LINKS
EXAMPLE
The product P(x,y) = Product_{n>=1} (1 - (x^n + y^n))^3 begins
P(x,y) = 1 + (-3*x - 3*y) + (0*x^2 + 6*x*y + 0*y^2) + (5*x^3 + 6*x^2*y + 6*x*y^2 + 5*y^3) + (0*x^4 - 9*x^3*y - 12*x^2*y^2 - 9*x*y^3 + 0*y^4) + (0*x^5 - 9*x^4*y - 6*x^3*y^2 - 6*x^2*y^3 - 9*x*y^4 + 0*y^5) + (-7*x^6 - 9*x^5*y + 6*x^4*y^2 - 6*x^3*y^3 + 6*x^2*y^4 - 9*x*y^5 - 7*y^6) + (0*x^7 + 12*x^6*y + 12*x^5*y^2 + 27*x^4*y^3 + 27*x^3*y^4 + 12*x^2*y^5 + 12*x*y^6 + 0*y^7) + (0*x^8 + 12*x^7*y + 24*x^6*y^2 + 30*x^5*y^3 + 6*x^4*y^4 + 30*x^3*y^5 + 24*x^2*y^6 + 12*x*y^7 + 0*y^8) + (0*x^9 + 12*x^8*y - 12*x^7*y^2 - 23*x^6*y^3 - 24*x^5*y^4 - 24*x^4*y^5 - 23*x^3*y^6 - 12*x^2*y^7 + 12*x*y^8 + 0*y^9) + (9*x^10 + 12*x^9*y + 0*x^8*y^2 + 3*x^7*y^3 - 15*x^6*y^4 - 12*x^5*y^5 - 15*x^4*y^6 + 3*x^3*y^7 + 0*x^2*y^8 + 12*x*y^9 + 9*x^0*y^10) + (0*x^11 - 15*x^10*y - 36*x^9*y^2 - 54*x^8*y^3 - 60*x^7*y^4 - 60*x^6*y^5 - 60*x^5*y^6 - 60*x^4*y^7 - 54*x^3*y^8 - 36*x^2*y^9 - 15*x*y^10 + 0*y^11) + (0*x^12 - 15*x^11*y - 24*x^10*y^2 - 23*x^9*y^3 - 30*x^8*y^4 - 9*x^7*y^5 - 12*x^6*y^6 - 9*x^5*y^7 - 30*x^4*y^8 - 23*x^3*y^9 - 24*x^2*y^10 - 15*x*y^11 + 0*y^12) + (0*x^13 - 15*x^12*y - 6*x^11*y^2 - 12*x^10*y^3 + 51*x^9*y^4 + 57*x^8*y^5 + 54*x^7*y^6 + 54*x^6*y^7 + 57*x^5*y^8 + 51*x^4*y^9 - 12*x^3*y^10 - 6*x^2*y^11 - 15*x*y^12 + 0*y^13) + (0*x^14 - 15*x^13*y + 6*x^12*y^2 + 24*x^11*y^3 + 66*x^10*y^4 + 33*x^9*y^5 + 69*x^8*y^6 + 96*x^7*y^7 + 69*x^6*y^8 + 33*x^5*y^9 + 66*x^4*y^10 + 24*x^3*y^11 + 6*x^2*y^12 - 15*x*y^13 + 0*y^14) + (-11*x^15 - 15*x^14*y + 24*x^13*y^2 + 49*x^12*y^3 + 87*x^11*y^4 + 69*x^10*y^5 + 127*x^9*y^6 + 93*x^8*y^7 + 93*x^7*y^8 + 127*x^6*y^9 + 69*x^5*y^10 + 87*x^4*y^11 + 49*x^3*y^12 + 24*x^2*y^13 - 15*x*y^14 - 11*y^15) + ...
This square table of coefficients T(n,k) of x^n*y^k in P(x,y) begins
1, -3, 0, 5, 0, 0, -7, 0, 0, 0, 9, 0, 0, 0, 0, -11, ...;
-3, 6, 6, -9, -9, -9, 12, 12, 12, 12, -15, -15, -15, -15, -15, 18, ...;
0, 6, -12, -6, 6, 12, 24, -12, 0, -36, -24, -6, 6, 24, 36, 54, ...;
5, -9, -6, -6, 27, 30, -23, 3, -54, -23, -12, 24, 49, 36, 66, 12, ...;
0, -9, 6, 27, 6, -24, -15, -60, -30, 51, 66, 87, 24, 72, -51, -135, ...;
0, -9, 12, 30, -24, -12, -60, -9, 57, 33, 69, 36, 51, -99, -120, -171, ...;
-7, 12, 24, -23, -15, -60, -12, 54, 69, 127, 21, -3, -141, -192, -192, 3, ...;
0, 12, -12, 3, -60, -9, 54, 96, 93, -66, 69, -213, -189, -201, 24, 15, ...;
0, 12, 0, -54, -30, 57, 69, 93, 24, -18, -204, -234, -150, 51, 36, 174, ...;
0, 12, -36, -23, 51, 33, 127, -66, -18, -134, -285, -165, 93, 171, 309, 629, ...;
9, -15, -24, -12, 66, 69, 21, 69, -204, -285, -192, 180, 69, 228, 621, 240, ...;
0, -15, -6, 24, 87, 36, -3, -213, -234, -165, 180, 114, 285, 819, 111, 480, ...;
0, -15, 6, 49, 24, 51, -141, -189, -150, 93, 69, 285, 736, 156, 396, -592, ...;
0, -15, 24, 36, 72, -99, -192, -201, 51, 171, 228, 819, 156, 282, -528, -618, ...;
0, -15, 36, 66, -51, -120, -192, 24, 36, 309, 621, 111, 396, -528, -792, -1137, ...;
-11, 18, 54, 12, -135, -171, 3, 15, 174, 629, 240, 480, -592, -618, -1137, -1532, ...; ...
Alternatively, this sequence can be written as a triangle, starting as
1;
-3, -3;
0, 6, 0;
5, 6, 6, 5;
0, -9, -12, -9, 0;
0, -9, -6, -6, -9, 0;
-7, -9, 6, -6, 6, -9, -7;
0, 12, 12, 27, 27, 12, 12, 0;
0, 12, 24, 30, 6, 30, 24, 12, 0;
0, 12, -12, -23, -24, -24, -23, -12, 12, 0;
9, 12, 0, 3, -15, -12, -15, 3, 0, 12, 9;
0, -15, -36, -54, -60, -60, -60, -60, -54, -36, -15, 0;
0, -15, -24, -23, -30, -9, -12, -9, -30, -23, -24, -15, 0;
0, -15, -6, -12, 51, 57, 54, 54, 57, 51, -12, -6, -15, 0;
0, -15, 6, 24, 66, 33, 69, 96, 69, 33, 66, 24, 6, -15, 0;
-11, -15, 24, 49, 87, 69, 127, 93, 93, 127, 69, 87, 49, 24, -15, -11;
0, 18, 36, 36, 24, 36, 21, -66, 24, -66, 21, 36, 24, 36, 36, 18, 0;
0, 18, 54, 66, 72, 51, -3, 69, -18, -18, 69, -3, 51, 72, 66, 54, 18, 0;
...
PROG
(PARI)
{P = prod(n=1, 61, (1 - (x^n + y^n) +O(x^61) +O(y^61))^3 ); }
{T(n, k) = polcoeff( polcoeff( P, n, x), k, y)}
for(n=0, 15, for(k=0, 15, print1( T(n, k), ", ") ); print(""))
CROSSREFS
Cf. A322214 (main diagonal), A322216 (antidiagonal sums).
Sequence in context: A193451 A378707 A335809 * A244492 A210838 A319256
KEYWORD
sign,tabl,look,changed
AUTHOR
Paul D. Hanna, Dec 04 2018
STATUS
approved