login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A322167
Decimal expansion of asymptotic probability of success in the returning secretary problem.
1
7, 6, 7, 9, 7, 4, 2, 6, 7, 2, 7, 9, 5, 7, 3, 4, 3, 0, 3, 0, 1, 8, 2, 2, 8, 9, 3, 7, 1, 8, 6, 4, 5, 0, 3, 9, 6, 5, 4, 2, 2, 4, 8, 3, 1, 0, 1, 3, 7, 2, 1, 0, 9, 9, 4, 0, 4, 1, 9, 0, 9, 9, 2, 7, 4, 8, 7, 0, 3, 7, 9, 5, 0, 5, 2, 0, 1, 3, 3
OFFSET
0,1
LINKS
Bryn Garrod, Grzegorz Kubicki, and Michał Morayne, How to choose the best twins, Siam J. Discrete Math., Vol. 26, No. 1 (2012), pp. 384-398.
J. M. Grau Ribas, A new look at the returning secretary problem, Journal of Combinatorial Optimization, Vol. 37, No. 4 (2019), pp. 1216-1236.
FORMULA
Equals (1/3)*(-4 + 6*sqrt(1 - x) + 4*x + (-2 + 2*sqrt(1-x) + x)*log(x)) where x = A322166.
EXAMPLE
0.76797426727957343030182289371864503965422...
MAPLE
x:=2/LambertW(2*exp(5)): evalf[90]((1/3)*(-4+6*sqrt(1-x)+4*x+(-2+2*sqrt(1-x)+x)*log(x))); # Muniru A Asiru, Dec 21 2018
MATHEMATICA
With[{x = 2/ProductLog[2*Exp[5]]}, RealDigits[(6*Sqrt[1 - x] + 4*x - 4 + (2*Sqrt[1 - x] + x - 2)*Log[x])/3, 10, 120][[1]]] (* Amiram Eldar, May 30 2023 *)
CROSSREFS
Cf. A322166.
Sequence in context: A153857 A093813 A092902 * A245771 A202345 A010512
KEYWORD
nonn,cons
AUTHOR
STATUS
approved