login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Regular triangle read by rows where T(n,k) is the number of labeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.
6

%I #12 Apr 15 2021 21:39:24

%S 1,1,1,0,2,3,0,1,10,16,0,0,12,79,125,0,0,6,162,847,1296,0,0,1,179,

%T 2565,11436,16807,0,0,0,116,4615,47100,185944,262144,0,0,0,45,5540,

%U 121185,987567,3533720,4782969,0,0,0,10,4720,220075,3376450,23315936,76826061,100000000

%N Regular triangle read by rows where T(n,k) is the number of labeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.

%H Andrew Howroyd, <a href="/A322147/b322147.txt">Table of n, a(n) for n = 0..1274</a>

%e Triangle begins:

%e 1

%e 1 1

%e 0 2 3

%e 0 1 10 16

%e 0 0 12 79 125

%e 0 0 6 162 847 1296

%e 0 0 1 179 2565 11436 16807

%t multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];

%t csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];

%t Table[If[n==0,1,Length[Select[Subsets[multsubs[Range[k],2],{n}],And[Union@@#==Range[k],Length[csm[#]]==1]&]]],{n,0,6},{k,1,n+1}]

%o (PARI)

%o Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}

%o M(n)={Mat([Col(p, -(n+1)) | p<-Connected(vector(2*n, j, (1 + x + O(x*x^n) )^binomial(j+1,2)))[1..n+1]])}

%o { my(T=M(10)); for(n=1, #T, print(T[n,][1..n])) } \\ _Andrew Howroyd_, Nov 29 2018

%Y Row sums are A322151. Last column is A000272.

%Y Column sums are A062740.

%Y Cf. A000664, A007718, A007719, A054923, A191646, A275421, A321254, A322114, A322115, A322137.

%K nonn,tabl

%O 0,5

%A _Gus Wiseman_, Nov 28 2018

%E Terms a(28) and beyond from _Andrew Howroyd_, Nov 29 2018