login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322144
a(n) = Sum_{i=1..phi(n)-1} (r(i+1)-r(i))^2 where r(1) = 1 < ... < n-1 = r(phi(n)) are the phi(n) integers relatively prime to n.
2
0, 0, 1, 4, 3, 16, 5, 12, 11, 24, 9, 36, 11, 32, 29, 28, 15, 56, 17, 52, 39, 48, 21, 76, 31, 56, 41, 68, 27, 128, 29, 60, 59, 72, 57, 116, 35, 80, 69, 108, 39, 168, 41, 100, 95, 96, 45, 156, 59, 136, 89, 116, 51, 176, 85, 140, 99, 120, 57, 260, 59, 128, 125, 124, 99
OFFSET
1,4
LINKS
Paul Erdos, Some Unconventional Problems in Number Theory, Mathematics Magazine, Vol. 52, No. 2, Mar., 1979, pp. 67-70. See Problem 12. p. 70.
FORMULA
a(p) = p-2, for p prime.
a(k^2 * m) = k * a(k * m) + 4 * (k - 1). - David A. Corneth, Nov 28 2018
EXAMPLE
a(1) and a(2) are 0, since we have an empty sum.
For a(3), the integers < 3, coprime to 3, are 1 and 2, so a(3) = (2-1)^2 = 1.
MATHEMATICA
a[n_] := Total[Differences[Select[Range[n], GCD[n, #]==1 &]]^2]; Array[a, 50] (* Amiram Eldar, Nov 28 2018 *)
PROG
(PARI) a(n) = {v = select(x->gcd(x, n)==1, vector(n, k, k)); sum(i=1, #v-1, (v[i+1] - v[i])^2); }
(PARI) a(n) = {my(res = 0, io = 1, in = 2); while(in < n, while(gcd(in, n) > 1, in++); res += (in - io)^2; io = in; in++); res}
first(n) = {my(res = vector(n)); for(i = 1, n, c = factorback(factor(i)[, 1]); if(c == i, res[i] = a(i), res[i] = res[c] * (i / c) + 4 * (i / c - 1))); res } \\ David A. Corneth, Nov 28 2018
CROSSREFS
Cf. A000010 (phi), A038566 (rows of r).
Cf. A040976 (prime(n)-2), A132952 (isolated totatives).
Sequence in context: A348061 A270908 A269781 * A272580 A065679 A223925
KEYWORD
nonn
AUTHOR
Michel Marcus, Nov 28 2018
STATUS
approved