login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Main diagonal of triangle A321600; a(n) = A321600(n,n-1) for n >= 1.
1

%I #7 Jul 04 2023 14:08:04

%S 2,6,26,78,242,726,2186,6558,19682,59046,177146,531438,1594322,

%T 4782966,14348906,43046718,129140162,387420486,1162261466,3486784398,

%U 10460353202,31381059606,94143178826,282429536478,847288609442,2541865828326,7625597484986,22876792454958,68630377364882,205891132094646,617673396283946,1853020188851838,5559060566555522,16677181699666566

%N Main diagonal of triangle A321600; a(n) = A321600(n,n-1) for n >= 1.

%C Triangle A321600 describes log( (1-y)*Sum_{n=-oo...+oo} (x^n + y)^n )/(1-y).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3, 1, -3).

%F L.g.f.: log( (1 - x)*(1 - x^2)/(1 - 3*x) ).

%F G.f.: 2*x*(1 + 3*x^2)/((1 - x^2)*(1 - 3*x)).

%e G.f.: A(x) = 2*x + 6*x^2 + 26*x^3 + 78*x^4 + 242*x^5 + 726*x^6 + 2186*x^7 + 6558*x^8 + 19682*x^9 + 59046*x^10 + ...

%e L.g.f.: L(x) = log( (1-x)*(1-x^2)/(1-3*x) ) = 2*x + 6*x^2/2 + 26*x^3/3 + 78*x^4/4 + 242*x^5/5 + 726*x^6/6 + 2186*x^7/7 + 6558*x^8/8 + 19682*x^9/9 + 59046*x^10/10 + 177146*x^11/11 + ... + A321600(n,n-1)*x^n/n + ...

%e such that

%e exp(L(x)) = 1 + 2*x + 5*x^2 + 16*x^3 + 48*x^4 + 144*x^5 + 432*x^6 + 1296*x^7 + 3888*x^8 + 11664*x^9 + 34992*x^10 + 104976*x^11 + ... + A257970(n)*x^n + ...

%e exp(L(x)/2) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 44*x^5 + 122*x^6 + 342*x^7 + 966*x^8 + 2746*x^9 + 7846*x^10 + 22514*x^11 + 64836*x^12 + ... + A105696(n)*x^n + ...

%o (PARI) {a(n) = n*polcoeff( log((1 - x)*(1 - x^2)/(1 - 3*x +x*O(x^n))),n)}

%o for(n=1,40,print1(a(n),", "))

%Y Cf. A321600, A257970, A105696.

%K nonn

%O 1,1

%A _Paul D. Hanna_, Nov 26 2018