Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 07 2024 15:52:07
%S 1,1,-2,1,-3,2,1,-5,4,-1,1,-9,10,-3,2,1,-17,28,-13,6,-4,1,-33,82,-57,
%T 26,-12,2,1,-65,244,-241,126,-50,8,0,1,-129,730,-993,626,-252,50,-3,3,
%U 1,-257,2188,-4033,3126,-1394,344,-45,13,-4,1,-513,6562,-16257,15626,-8052,2402,-441,91,-18,2
%N Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} (-1)^(n/d+d)*d^k.
%C For each k, the k-th column sequence (T(n,k))(n>=1) is a multiplicative function of n, equal to (-1)^(n+1)*(Id_k * 1) in the notation of the Bala link. - _Peter Bala_, Mar 19 2022
%H Andrew Howroyd, <a href="/A322083/b322083.txt">Table of n, a(n) for n = 1..1275</a> (first 50 antidiagonals)
%H Peter Bala, <a href="/A067856/a067856_1.pdf">A signed Dirichlet product of arithmetical functions</a>
%H <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>
%F G.f. of column k: Sum_{j>=1} (-1)^(j+1)*j^k*x^j/(1 + x^j).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e -2, -3, -5, -9, -17, -33, ...
%e 2, 4, 10, 28, 82, 244, ...
%e -1, -3, -13, -57, -241, -993, ...
%e 2, 6, 26, 126, 626, 3126, ...
%e -4, -12, -50, -252, -1394, -8052, ...
%t Table[Function[k, Sum[(-1)^(n/d+d) d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
%t Table[Function[k, SeriesCoefficient[Sum[(-1)^(j + 1) j^k x^j/(1 + x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
%t f[p_, e_, k_] := If[k == 0, e + 1, (p^(k*e + k) - 1)/(p^k - 1)]; f[2, e_, k_] := If[k == 0, e - 3, -((2^(k - 1) - 1)*2^(k*e + 1) + 2^(k + 1) - 1)/(2^k - 1)]; T[1, k_] = 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[n - k, k], {n, 1, 11}, {k, n - 1, 0, -1}] // Flatten (* _Amiram Eldar_, Nov 22 2022 *)
%o (PARI) T(n,k)={sumdiv(n, d, (-1)^(n/d+d)*d^k)}
%o for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ _Andrew Howroyd_, Nov 26 2018
%Y Columns k=0..12 give A228441, A109506, A321558, A321559, A321560, A321561, A321562, A321563, A321564, A321565, A321807, A321808, A321809.
%Y Cf. A109974, A279394, A279396, A285425, A322081, A322082, A322084.
%K sign,tabl
%O 1,3
%A _Ilya Gutkovskiy_, Nov 26 2018