login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let p1 <= p2 <= ... <= pk be the prime factors of n, with repetition; let s = 1/p1 + 1/(p1*p2) + 1/(p1*p2*p3) + ... + 1/(p1*p2*...*pk); a(n) = denominator of s. a(1)=1 by convention.
5

%I #17 Jun 12 2022 15:15:48

%S 1,2,3,4,5,3,7,8,9,5,11,6,13,7,5,16,17,18,19,5,21,11,23,12,25,13,27,

%T 14,29,10,31,32,11,17,35,36,37,19,39,10,41,42,43,22,15,23,47,24,49,50,

%U 17,13,53,27,55,28,57,29,59,20,61,31,63,64,65,22

%N Let p1 <= p2 <= ... <= pk be the prime factors of n, with repetition; let s = 1/p1 + 1/(p1*p2) + 1/(p1*p2*p3) + ... + 1/(p1*p2*...*pk); a(n) = denominator of s. a(1)=1 by convention.

%H Seiichi Manyama, <a href="/A322035/b322035.txt">Table of n, a(n) for n = 1..16384</a>

%e If n=12 we get the prime factors 2,2,3, and s = 1/2 + 1/4 + 1/12 = 5/6. So a(12) = 6.

%e The fractions s for n >= 2 are 1/2, 1/3, 3/4, 1/5, 2/3, 1/7, 7/8, 4/9, 3/5, 1/11, 5/6, 1/13, 4/7, 2/5, 15/16, 1/17, 13/18, 1/19, 4/5, 8/21, ...

%p # This generates the terms starting at n=2:

%p P:=proc(n) local FM: FM:=ifactors(n)[2]: seq(seq(FM[j][1], k=1..FM[j][2]), j=1..nops(FM)) end: # A027746

%p f0:=[]; f1:=[]; f2:=[];

%p for n from 2 to 120 do

%p a:=0; b:=1; t1:=[P(n)];

%p for i from 1 to nops(t1) do b:=b/t1[i]; a:=a+b; od;

%p f0:=[op(f0),a]; f1:=[op(f1), numer(a)]; f2:=[op(f2),denom(a)]; od:

%p f0; # s

%p f1; # A322034

%p f2; # A322035

%p f2-f1; # A322036

%Y Cf. A006022, A027746, A322034, A322036.

%Y A017665/A017666 = sum of reciprocals of all divisors of n.

%K nonn,frac

%O 1,2

%A _N. J. A. Sloane_ and _David James Sycamore_, Nov 28 2018