login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

6-dimensional Catalan numbers.
5

%I #27 Sep 08 2022 08:46:23

%S 1,1,132,87516,140229804,396499770810,1671643033734960,

%T 9490348077234178440,67867669180627125604080,

%U 583692803893929928888544400,5838544419011620940996212276800,66244124978105851196543024492572800,836288764382254532915188713779640302400,11570895443447601081407359451642915869302000

%N 6-dimensional Catalan numbers.

%C Number of n X 6 Young tableaux.

%H Seiichi Manyama, <a href="/A321975/b321975.txt">Table of n, a(n) for n = 0..222</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Hook_length_formula">Hook length formula</a>

%F a(n) = 0!*1!*...*5! * (6*n)! / ( n!*(n+1)!*...*(n+5)! ).

%F a(n) ~ 5 * 2^(6*n + 6) * 3^(6*n + 7/2) / (Pi^(5/2) * n^(35/2)). - _Vaclav Kotesovec_, Nov 23 2018

%p a:= n-> (6*n)! * mul(i!/(6+i)!, i=0..n-1):

%p seq(a(n), n=0..14); # _Alois P. Heinz_, Nov 25 2018

%t Table[34560 (6 n)! / (n! (n + 1)! (n + 2)! (n + 3)! (n + 4)! (n + 5)!), {n, 0, 60}] (* _Vincenzo Librandi_, Nov 24 2018 *)

%o (PARI) {a(n) = 34560*(6*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!*(n+5)!)}

%o (Magma) [34560*Factorial(6*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)): n in [0..15]]; // _Vincenzo Librandi_, Nov 24 2018

%o (GAP) List([0..15],n->34560*Factorial(6*n)/Product([0..5],k->Factorial(n+k))); # _Muniru A Asiru_, Nov 25 2018

%Y Row 6 of A060854.

%Y Cf. A000108, A005789, A005790, A005791.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Nov 23 2018