login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321942
A sequence related to the Euler-Gompertz constant.
2
1, 2, 8, 44, 300, 2420, 22460, 235260, 2741660, 35152820, 491459820, 7436765660, 121046445260, 2108118579060, 39104985755420, 769549656815420, 16009942093608060, 351030466622487860, 8089084984387984460, 195421894806240545820, 4938445392988428283820
OFFSET
1,2
COMMENTS
a(n) satisfies the recurrence a(n) = (2n-1)*a(n-1) - (n-1)*(n-2)*a(n-2) for n > 2, with initial conditions a(1)=1, a(2)=2.
The same recurrence is satisfied by A000262(n), but with different initial conditions.
The limit of a(n)/A000262(n) as n tends to infinity is the Euler-Gompertz constant G = e*E1(1), where E1 is an exponential integral. The decimal representation of G is given by A073003.
The convergents of the c.f. G = 1-1/(3-1*2/(5-2*3/(7-3*4/(9-...)))) are (a(n)/A000262(n)) = (1, 2/3, 8/13, 44/73, ...). The c.f. is equivalent to Bala's c.f. for 1-G given in the entry for A073003.
a(n)/A000262(n) - G ~ 2*Pi*exp(1-4*sqrt(n)) as n tends to infinity.
a(n)/n! ~ G*exp(2*sqrt(n))/(2*n^(3/4)*sqrt(Pi*e)) as n tends to infinity.
a(n) = A000262(n) - |A201203(n-2)| for n >= 2.
LINKS
Richard P. Brent, M. L. Glasser, and Anthony J. Guttmann, A Conjectured Integer Sequence Arising From the Exponential Integral, arXiv:1812.00316 [math.NT], 2018.
NIST Digital Library of Mathematical Functions, Exponential, Logarithmic, Sine and Cosine Integrals.
FORMULA
a(n) = (2n-1)*a(n-1) - (n-1)*(n-2)*a(n-2) for n > 2.
E.g.f.: exp(x/(1-x))*(G - E1(x/(1-x))), where G is the Euler-Gompertz constant and E1 is an exponential integral.
Conjecture: Integral_{x = 0..oo} (x/(1 + x))^n*exp(-x) dx = 1/(n-1)!*( a(n) - A000262(n)*G ), where G = Integral_{x = 0..oo} exp(-x)/(1 + x) dx is the Euler-Gompertz constant A073003. - Peter Bala, Mar 20 2022
EXAMPLE
a(3) = (2*3-1)*a(2) - 2*1*a(1) = 5*2 - 2*1 = 8.
a(3) = A000262(3) - |A201203(1)| = 13 - |5| = 8.
MAPLE
a:= proc(n) option remember; `if`(n<3, n,
(2*n-1)*a(n-1) -(n-1)*(n-2)*a(n-2))
end:
seq(a(n), n=1..23); # Alois P. Heinz, Dec 12 2018
MATHEMATICA
a[n_] := a[n] = (2n-1)a[n-1] - (n-1)(n-2)a[n-2]; a[1] = 1; a[2] = 2;
Array[a, 21] (* Jean-François Alcover, Oct 06 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Richard P. Brent, Dec 12 2018
STATUS
approved