login
Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in h(u) * Product_i u_i!, where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and h is homogeneous symmetric functions.
0

%I #6 Nov 23 2018 21:13:57

%S 1,1,1,0,1,2,3,1,0,1,1,0,0,1,6,3,8,6,1,0,1,0,2,1,0,0,2,3,1,0,0,0,1,1,

%T 0,0,0,0,1,24,30,20,15,20,10,1,0,6,0,3,8,6,1,0,0,2,3,2,4,1,0,0,0,1,0,

%U 2,1,0,0,0,0,2,3,1,0,0,0,0,0,1,1,0,0,0,0

%N Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in h(u) * Product_i u_i!, where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and h is homogeneous symmetric functions.

%C The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>

%e Tetrangle begins (zeros not shown):

%e (1): 1

%e .

%e (2): 1 1

%e (11): 1

%e .

%e (3): 2 3 1

%e (21): 1 1

%e (111): 1

%e .

%e (4): 6 3 8 6 1

%e (22): 1 2 1

%e (31): 2 3 1

%e (211): 1 1

%e (1111): 1

%e .

%e (5): 24 30 20 15 20 10 1

%e (41): 6 3 8 6 1

%e (32): 2 3 2 4 1

%e (221): 1 2 1

%e (311): 2 3 1

%e (2111): 1 1

%e (11111): 1

%e For example, row 14 gives: 12h(32) = 2p(32) + 3p(221) + 2p(311) + 4p(2111) + p(11111).

%Y This is a regrouping of the triangle A321897.

%Y Cf. A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321912-A321935.

%K nonn,tabf

%O 1,6

%A _Gus Wiseman_, Nov 23 2018