Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Nov 19 2023 10:23:38
%S 1,0,-1,0,0,1,2,3,2,3,2,1,2,3,2,1,0,1,0,-1,0,1,2,1,0,1,0,1,2,1,2,3,2,
%T 3,4,5,4,3,4,5,4,3,2,3,4,3,4,3,4,3,4,5,6,5,4,5,4,5,6,7,8,9,10,9,8,7,6,
%U 7,8,9,8,9,8,9,8,7,6,5,4,5,4,3,4,3,4,3,2
%N a(n) = A321860(prime(n)).
%C Among the first 10000 terms there are only 32 negative ones.
%C Please see the comment in A321856 describing "Chebyshev's bias" in the general case.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev%27s_bias">Chebyshev's bias</a>
%F a(n) = -Sum_{primes p<=n} Legendre(prime(i),11) = -Sum_{primes p<=n} Kronecker(-11,prime(i)) = -Sum_{i=1..n} A011582(prime(i)).
%e prime(46) = 199. Among the primes <= 199, there are 20 ones congruent to 1, 3, 4, 5, 9 modulo 11 and 23 ones congruent to 2, 6, 7, 8, 10 modulo 11, so a(46) = 23 - 20 = 3.
%o (PARI) a(n) = -sum(i=1, n, kronecker(-11, prime(i)))
%Y Cf. A011582.
%Y Let d be a fundamental discriminant.
%Y Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).
%Y Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: this sequence (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).
%K sign
%O 1,7
%A _Jianing Song_, Nov 20 2018