login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of primes of the form 3*m + 2 <= n minus number of primes of the form 3*m + 1 <= n.
17

%I #26 Nov 18 2023 08:28:48

%S 0,1,1,1,2,2,1,1,1,1,2,2,1,1,1,1,2,2,1,1,1,1,2,2,2,2,2,2,3,3,2,2,2,2,

%T 2,2,1,1,1,1,2,2,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,3,3,3,3,3,3,2,2,

%U 2,2,3,3,2,2,2,2,2,2,1,1,1,1,2,2,2,2,2

%N Number of primes of the form 3*m + 2 <= n minus number of primes of the form 3*m + 1 <= n.

%C a(n) is the number of primes <= n that are quadratic nonresidues modulo 3 minus the number of primes <= n that are quadratic residues modulo 3.

%C Conjecturally infinitely many terms are negative. The earliest negative term is a(608981813029) = -1, see A112632.

%C In general, assuming the strong form of the Riemann Hypothesis, if 0 < a, b < k are integers, gcd(a, k) = gcd(b, k) = 1, a is a quadratic residue and b is a quadratic nonresidue mod k, then Pi(k,b)(n) > Pi(k,a)(n) occurs more often than not. Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x. This phenomenon is called "Chebyshev's bias". (See Wikipedia link and especially the links in A007350.) [Edited by _Peter Munn_, Nov 05 2023]

%H Andrew Granville and Greg Martin, <a href="http://www.jstor.org/stable/27641834">Prime number races</a>, Amer. Math. Monthly, 113 (No. 1, 2006), 1-33.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev%27s_bias">Chebyshev's bias</a>

%F a(n) = -Sum_{primes p<=n} Legendre(p,3) = -Sum_{primes p<=n} Kronecker(-3,p) = -Sum_{primes p<=n} A102283(p).

%F a(n) = A340764(n) - A340763(n). - _Jianing Song_, May 06 2021

%e Below 100, there are 11 primes congruent to 1 modulo 3 and 13 primes congruent to 2 modulo 3, so a(100) = 13 - 11 = 2.

%o (PARI) a(n) = -sum(i=1, n, isprime(i)*kronecker(-3, i))

%Y Cf. A007350, A102283, A340763, A340764.

%Y Let d be a fundamental discriminant.

%Y Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), this sequence (d=-3), A321857 (d=5), A071838 (d=8), A321858 (d=12).

%Y Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).

%K sign

%O 1,5

%A _Jianing Song_, Nov 20 2018