login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n, d==1 (mod 4)} d^11 - Sum_{d|n, d==3 (mod 4)} d^11.
3

%I #33 Sep 08 2024 10:02:38

%S 1,1,-177146,1,48828126,-177146,-1977326742,1,31380882463,48828126,

%T -285311670610,-177146,1792160394038,-1977326742,-8649707208396,1,

%U 34271896307634,31380882463,-116490258898218,48828126,350275523038332,-285311670610

%N a(n) = Sum_{d|n, d==1 (mod 4)} d^11 - Sum_{d|n, d==3 (mod 4)} d^11.

%H Seiichi Manyama, <a href="/A321827/b321827.txt">Table of n, a(n) for n = 1..10000</a>

%H J. W. L. Glaisher, <a href="https://books.google.com/books?id=bLs9AQAAMAAJ&amp;pg=RA1-PA1">On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares</a>, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).

%H <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>.

%F a(n) = a(A000265(n)). - _M. F. Hasler_, Nov 26 2018

%F G.f.: Sum_{k>=1} (-1)^(k-1)*(2*k - 1)^11*x^(2*k-1)/(1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Dec 06 2018

%F Multiplicative with a(2^e) = 1, and for an odd prime p, ((p^11)^(e+1)-1)/(p^11-1) if p == 1 (mod 4) and ((-p^11)^(e+1)-1)/(-p^11-1) if p == 3 (mod 4). - _Amiram Eldar_, Sep 27 2023

%F a(n) = Sum_{d|n} d^11*sin(d*Pi/2). - _Ridouane Oudra_, Sep 08 2024

%t s[n_, r_] := DivisorSum[n, #^11 &, Mod[#, 4] == r &]; a[n_] := s[n, 1] - s[n, 3]; Array[a, 30] (* _Amiram Eldar_, Nov 26 2018 *)

%t f[p_, e_] := If[Mod[p, 4] == 1, ((p^11)^(e+1)-1)/(p^11-1), ((-p^11)^(e+1)-1)/(-p^11-1)]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* _Amiram Eldar_, Sep 27 2023 *)

%o (PARI) apply( A321828(n)=sumdiv(n>>valuation(n,2),d,(2-d%4)*d^11), [1..40]) \\ _M. F. Hasler_, Nov 26 2018

%Y Column k=11 of A322143.

%Y Cf. A321543 - A321565, A321807 - A321836 for similar sequences.

%Y Cf. A000265.

%K sign,easy,mult

%O 1,3

%A _N. J. A. Sloane_, Nov 24 2018