The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321795 Numbers m such that m^2+1 is prime with (m-1)^2+1 and (m+1)^2+1 semiprimes. 2
 4, 10, 170, 570, 780, 950, 1420, 2380, 2730, 3850, 4120, 4300, 5850, 6360, 6460, 6800, 6970, 7100, 7240, 8720, 9630, 10150, 10580, 11010, 11170, 11830, 12300, 14290, 16330, 17670, 17810, 17850, 17860, 18940, 19030, 20500, 21930, 23960, 24490, 25830, 26050 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Subsequence of A005574. For n>1, a(n) == 0 (mod 10). The corresponding pairs of semiprimes ((m-1)^2+1, (m+1)^2+1) are of the form (2p, 2q) with p, q primes == 1 (mod 10). So, a(n) = (q - p)/2 and a(n)^2 + 1 = p + q - 1. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 EXAMPLE 10 is in the sequence because 10^2 + 1 = 101 is prime, and 9^2 + 1 = 2*41, 11^2 + 1 = 2*61 are semiprimes. MATHEMATICA Select[Range[50000], PrimeOmega[(#-1)^2+1]==2&&PrimeQ[#^2+1]&&PrimeOmega[(#+1)^2+1]==2&] Mean/@SequencePosition[Table[Which[PrimeQ[m^2+1], 1, PrimeOmega[m^2+1]==2, 2, True, 0], {m, 30000}], {2, 1, 2}] (* Requires Mathematica version 10 or later *)  (* Harvey P. Dale, Sep 04 2019 *) PROG (PARI) isok(m) = isprime(m^2+1) && (bigomega((m-1)^2+1) == 2) && (bigomega((m+1)^2+1) == 2); \\ Michel Marcus, Nov 20 2018 CROSSREFS Cf. A005574, A085722. Sequence in context: A273517 A003086 A102958 * A220197 A299880 A085649 Adjacent sequences:  A321792 A321793 A321794 * A321796 A321797 A321798 KEYWORD nonn AUTHOR Michel Lagneau, Nov 19 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 03:26 EDT 2021. Contains 347623 sequences. (Running on oeis4.)