login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321795
Numbers m such that m^2+1 is prime with (m-1)^2+1 and (m+1)^2+1 semiprimes.
2
4, 10, 170, 570, 780, 950, 1420, 2380, 2730, 3850, 4120, 4300, 5850, 6360, 6460, 6800, 6970, 7100, 7240, 8720, 9630, 10150, 10580, 11010, 11170, 11830, 12300, 14290, 16330, 17670, 17810, 17850, 17860, 18940, 19030, 20500, 21930, 23960, 24490, 25830, 26050
OFFSET
1,1
COMMENTS
Subsequence of A005574.
For n>1, a(n) == 0 (mod 10).
The corresponding pairs of semiprimes ((m-1)^2+1, (m+1)^2+1) are of the form (2p, 2q) with p, q primes == 1 (mod 10). So, a(n) = (q - p)/2 and a(n)^2 + 1 = p + q - 1.
LINKS
EXAMPLE
10 is in the sequence because 10^2 + 1 = 101 is prime, and 9^2 + 1 = 2*41, 11^2 + 1 = 2*61 are semiprimes.
MATHEMATICA
Select[Range[50000], PrimeOmega[(#-1)^2+1]==2&&PrimeQ[#^2+1]&&PrimeOmega[(#+1)^2+1]==2&]
Mean/@SequencePosition[Table[Which[PrimeQ[m^2+1], 1, PrimeOmega[m^2+1]==2, 2, True, 0], {m, 30000}], {2, 1, 2}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 04 2019 *)
PROG
(PARI) isok(m) = isprime(m^2+1) && (bigomega((m-1)^2+1) == 2) && (bigomega((m+1)^2+1) == 2); \\ Michel Marcus, Nov 20 2018
CROSSREFS
Sequence in context: A370687 A003086 A102958 * A220197 A299880 A358928
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 19 2018
STATUS
approved