%I #5 Nov 20 2018 19:45:59
%S 1,1,2,1,3,3,5,1,4,7,7,4,11,13,12,1,15,8,22,11,30,24,30,5,14,39,9,25,
%T 42,33,56,1,59,64,47,13,77,98,113,16,101,90,135,50,43,150,176,6,53,48,
%U 195,94,231,22,119,41,331,219,297,62,385,322,141,1,250,211
%N Sum of coefficients of monomial symmetric functions in the Schur function of the integer partition with Heinz number n.
%C The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e The sum of coefficients of s(41) = m(32) + m(41) + 2m(221) + 2m(311) + 3m(2111) + 4m(11111) is a(14) = 13.
%Y Row sums of A321761.
%Y Cf. A000085, A008480, A056239, A124794, A124795, A153452, A296150, A296188, A300121, A319193, A321742-A321765.
%K nonn
%O 1,3
%A _Gus Wiseman_, Nov 20 2018