Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Nov 20 2018 16:30:14
%S 1,1,2,-1,-1,1,3,-3,1,-3,5,-2,4,-2,-4,4,-1,1,-2,1,-2,3,2,-4,1,-4,2,7,
%T -7,2,5,-5,-5,5,5,-5,1,4,-4,-7,10,-3,6,-6,-6,-3,2,6,12,-9,-6,6,-1,-5,
%U 9,5,-7,-9,9,-2,-5,5,11,-11,-8,10,-2,-1,1,2,-3,1,7
%N Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of h(v) in m(u), where H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.
%C Row n has length A000041(A056239(n)).
%C The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C Also the coefficient of e(v) in f(u), where e is elementary symmetric functions and f is forgotten symmetric functions.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e Triangle begins:
%e 1
%e 1
%e 2 -1
%e -1 1
%e 3 -3 1
%e -3 5 -2
%e 4 -2 -4 4 -1
%e 1 -2 1
%e -2 3 2 -4 1
%e -4 2 7 -7 2
%e 5 -5 -5 5 5 -5 1
%e 4 -4 -7 10 -3
%e 6 -6 -6 -3 2 6 12 -9 -6 6 -1
%e -5 9 5 -7 -9 9 -2
%e -5 5 11 -11 -8 10 -2
%e -1 1 2 -3 1
%e 7 -7 -7 -7 14 7 7 7 -7 -7 -21 14 7 -7 1
%e 5 -7 -11 14 10 -14 3
%e For example, row 10 gives: m(31) = -4h(4) + 2h(22) + 7h(31) - 7h(211) + 2h(1111).
%Y Row sums are A080339.
%Y Cf. A005651, A008480, A048994, A056239, A124794, A124795, A135278, A300121, A319191, A319193, A321738, A321742-A321765.
%K sign,tabf
%O 1,3
%A _Gus Wiseman_, Nov 20 2018