login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321691
Approximations up to 2^n for the 2-adic integer log(-3).
4
0, 0, 0, 4, 4, 20, 52, 116, 244, 244, 244, 244, 2292, 2292, 10484, 26868, 59636, 59636, 190708, 190708, 190708, 1239284, 1239284, 1239284, 9627892, 9627892, 43182324, 43182324, 43182324, 43182324, 580053236, 580053236, 580053236, 4875020532
OFFSET
0,4
COMMENTS
Let 4Q_2 = {x belongs to Q_2 : |x|_2 <= 1/4} and 4Q_2 + 1 = {x belongs to Q_2: |x - 1|_2 <= 1/4}. Define exp(x) = Sum_{k>=0} x^k/k! and log(x) = -Sum_{k>=1} (1 - x)^k/k over 2-adic field, then exp(x) is a one-to-one mapping from 4Q_2 to 4Q_2 + 1, and log(x) is the inverse of exp(x).
FORMULA
a(n) = Sum_{i=0..n-1} A321694(i)*2^i.
Conjecture: a(n) = 2*A309753(n-1). - R. J. Mathar, Aug 06 2023
EXAMPLE
a(3) = (-4 + O(2^3)) mod 8 = (-4) mod 8 = 4.
a(6) = (-4 - 4^2/2 - O(2^6)) mod 64 = (-12) mod 64 = 52.
a(10) = (-4 - 4^2/2 - 4^3/3 - 4^4/4 - O(2^10)) mod 1024 = (-292/3) mod 1024 = 244.
a(11) = (-4 - 4^2/2 - 4^3/3 - 4^4/4 - 4^5/5 - O(2^11)) mod 2048 = (-4532/15) mod 2048 = 244.
PROG
(PARI) a(n) = if(n, lift(log(-3 + O(2^n))), 0);
CROSSREFS
Cf. A321690 (log(5)), A321694.
Sequence in context: A180967 A231884 A052923 * A014433 A191366 A216164
KEYWORD
nonn
AUTHOR
Jianing Song, Nov 17 2018
STATUS
approved