Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 14 2019 12:19:49
%S 1,1,1,3,3,5,13,15,23,33,49,59,83,101,133,281,321,477,655,941,1249,
%T 1795,2241,3039,3867,5047,6257,8063,11459,13891,18165,23149,29975,
%U 37885,49197,61829,89877,109165,145673,185671,246131,310325,408799,514485,668017,871383
%N Number of non-isomorphic multiset partitions of weight n whose incidence matrix has all distinct entries.
%C The incidence matrix of a multiset partition has entry (i, j) equal to the multiplicity of vertex i in part j.
%C Also the number of positive integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, with all different entries.
%C The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
%H Andrew Howroyd, <a href="/A321662/b321662.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = Sum_{k>=1} (A121860(k) + A121860(k+1) - 2)*A008289(n,k) for n > 0. - _Andrew Howroyd_, Nov 17 2018
%e Non-isomorphic representatives of the a(3) = 3 through a(7) = 15 multiset partitions:
%e {{111}} {{1111}} {{11111}} {{111111}} {{1111111}}
%e {{122}} {{1222}} {{11222}} {{112222}} {{1112222}}
%e {{1}{11}} {{1}{111}} {{12222}} {{122222}} {{1122222}}
%e {{1}{1111}} {{122333}} {{1222222}}
%e {{11}{111}} {{1}{11111}} {{1223333}}
%e {{11}{1111}} {{1}{111111}}
%e {{1}{11222}} {{11}{11111}}
%e {{11}{1222}} {{111}{1111}}
%e {{112}{222}} {{1}{112222}}
%e {{122}{222}} {{11}{12222}}
%e {{2}{11222}} {{112}{2222}}
%e {{22}{1222}} {{122}{2222}}
%e {{1}{11}{111}} {{2}{112222}}
%e {{22}{12222}}
%e {{1}{11}{1111}}
%t (* b = A121860 *) b[n_] := Sum[n!/(d! (n/d)!), {d, Divisors[n]}];
%t (* c = A008289 *) c[n_, k_] := c[n, k] = If[n < k || k < 1, 0, If[n == 1, 1, c[n - k, k] + c[n - k, k - 1]]];
%t a[n_] := If[n == 0, 1, Sum[ (b[k] + b[k + 1] - 2) c[n, k], {k, 1, n}]];
%t a /@ Range[0, 45] (* _Jean-François Alcover_, Sep 14 2019 *)
%o (PARI) \\ here b(n) is A121860(n).
%o b(n)={sumdiv(n, d, n!/(d!*(n/d)!))}
%o seq(n)={my(B=vector((sqrtint(8*(n+1))+1)\2, n, if(n==1, 1, b(n-1)+b(n)-2))); apply(p->sum(i=0, poldegree(p), B[i+1]*polcoef(p, i)), Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n))))} \\ _Andrew Howroyd_, Nov 16 2018
%Y Cf. A000219, A007716, A008289, A059201, A114736, A117433, A120733, A121860, A321653, A321659, A321660, A321661.
%K nonn
%O 0,4
%A _Gus Wiseman_, Nov 15 2018
%E Terms a(11) and beyond from _Andrew Howroyd_, Nov 16 2018