%I #5 Nov 15 2018 21:12:40
%S 1,1,1,5,5,9,29,33,53,77,225
%N Number of distinct row/column permutations of strict plane partitions of n.
%e The a(6) = 9 permutations of strict plane partitions:
%e [6] [2 4] [4 2] [1 5] [5 1] [1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1]
%e .
%e [1] [5] [0 1] [1 0] [2 3] [3 2] [2] [4] [0 2] [1 3] [2 0] [3 1]
%e [5] [1] [2 3] [3 2] [0 1] [1 0] [4] [2] [1 3] [0 2] [3 1] [2 0]
%e .
%e [1] [1] [2] [2] [3] [3]
%e [2] [3] [1] [3] [1] [2]
%e [3] [2] [3] [1] [2] [1]
%t submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{___,x_,W___}}/;submultisetQ[{Z},{W}]]];
%t multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
%t Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@Length/@Split[#],OrderedQ[Sort[Map[Last,GatherBy[Sort[Reverse/@#],First],{2}],submultisetQ],submultisetQ],OrderedQ[Sort[Sort/@Map[Last,GatherBy[#,First],{2}],submultisetQ],submultisetQ]]&]],{n,5}]
%Y Cf. A000219, A001970, A007716, A008480, A068313, A114736, A117433, A120733, A321645, A319646, A321647, A321648.
%K nonn,more
%O 0,4
%A _Gus Wiseman_, Nov 15 2018