login
The Riordan square of the Lucas numbers, triangle read by rows, T(n, k) for 0 <= k <= n.
2

%I #19 Mar 27 2020 17:34:09

%S 1,1,1,3,4,1,4,10,7,1,7,24,26,10,1,11,49,77,51,13,1,18,98,200,190,85,

%T 16,1,29,187,473,595,390,128,19,1,47,350,1056,1658,1450,704,180,22,1,

%U 76,642,2253,4255,4688,3062,1159,241,25,1

%N The Riordan square of the Lucas numbers, triangle read by rows, T(n, k) for 0 <= k <= n.

%C Compare A000032 (Lucas numbers with a(0) = 2), A000204 (Lucas numbers with a(0) undefined). Our variant has a(0) = 1.

%C Triangle, read by rows, given by [1, 2, -5/2, 1/2, 0, 0, 0, 0, 0, ...]DELTA[1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Feb 06 2020

%F T(0,0) = 1, T(1,1) = 1, T(1,0) = 1, T(n,k) = 0 for k<0 and for k>n, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k) + 2*T(n-2,k-1), for n>1. - _Philippe Deléham_, Feb 06 2020

%e [0] [ 1]

%e [1] [ 1, 1]

%e [2] [ 3, 4, 1]

%e [3] [ 4, 10, 7, 1]

%e [4] [ 7, 24, 26, 10, 1]

%e [5] [ 11, 49, 77, 51, 13, 1]

%e [6] [ 18, 98, 200, 190, 85, 16, 1]

%e [7] [ 29, 187, 473, 595, 390, 128, 19, 1]

%e [8] [ 47, 350, 1056, 1658, 1450, 704, 180, 22, 1]

%e [9] [ 76, 642, 2253, 4255, 4688, 3062, 1159, 241, 25, 1]

%p # The function RiordanSquare is defined in A321620.

%p Lucas := 1 + x*(1 + 2*x)/(1 - x - x^2); RiordanSquare(Lucas, 10);

%t (* The function RiordanSquare is defined in A321620. *)

%t Lucas = 1 + x*(1 + 2*x)/(1 - x - x^2);

%t RiordanSquare[Lucas, 10] (* _Jean-François Alcover_, Jun 15 2019, from Maple *)

%o (Sage) # uses[riordan_square from A321620]

%o riordan_square(1 + x*(1 + 2*x)/(1 - x - x^2), 10)

%Y T(n, 0) = A000204, A000032 (Lucas), A321573 (row sums), A000007 (alternating row sums).

%Y Cf. A321620.

%K nonn,tabl

%O 0,4

%A _Peter Luschny_, Nov 22 2018