login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321623
The Riordan square of the large Schröder numbers, triangle read by rows, T(n, k) for 0 <= k <= n.
2
1, 2, 2, 6, 10, 4, 22, 46, 32, 8, 90, 214, 196, 88, 16, 394, 1018, 1104, 672, 224, 32, 1806, 4946, 6020, 4448, 2048, 544, 64, 8558, 24470, 32400, 27432, 15584, 5792, 1280, 128, 41586, 122926, 173572, 162680, 107408, 49824, 15552, 2944, 256
OFFSET
0,2
COMMENTS
Triangle, read by rows,given by [2,1,2,1,2,1,2,1,...]DELTA[2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 05 2020
FORMULA
T(n, k) = 2^k*A133367(n,k). - Philippe Deléham, Feb 05 2020
EXAMPLE
[0][ 1]
[1][ 2, 2]
[2][ 6, 10, 4]
[3][ 22, 46, 32, 8]
[4][ 90, 214, 196, 88, 16]
[5][ 394, 1018, 1104, 672, 224, 32]
[6][ 1806, 4946, 6020, 4448, 2048, 544, 64]
[7][ 8558, 24470, 32400, 27432, 15584, 5792, 1280, 128]
[8][ 41586, 122926, 173572, 162680, 107408, 49824, 15552, 2944, 256]
[9][206098, 625522, 929248, 942592, 697408, 379840, 149248, 40192, 6656, 512]
MAPLE
# The function RiordanSquare is defined in A321620.
LargeSchröder := x -> (1 - x - sqrt(1 - 6*x + x^2))/(2*x);
RiordanSquare(LargeSchröder(x), 10);
MATHEMATICA
(* The function RiordanSquare is defined in A321620. *)
LargeSchröder[x_] := (1 - x - Sqrt[1 - 6*x + x^2])/(2*x);
RiordanSquare[LargeSchröder[x], 10] (* Jean-François Alcover, Jun 15 2019, from Maple *)
PROG
(Sage) # uses[riordan_square from A321620]
riordan_square((1 - x - sqrt(1 - 6*x + x^2))/(2*x), 10)
CROSSREFS
T(n, 0) = A006318 (large Schröder), A321574 (row sums), A000007 (alternating row sums).
Sequence in context: A192659 A327485 A207975 * A375045 A077063 A081728
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 22 2018
STATUS
approved