login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partitioned 2nd-order Eulerian numbers forming an "Eulerian pyramid" (tetrahedron).
0

%I #11 Dec 14 2018 19:37:49

%S 1,1,1,1,1,4,4,1,4,1,1,11,11,11,36,11,1,11,11,1,1,26,26,66,196,66,26,

%T 196,196,26,1,26,66,26,1,1,57,57,302,848,302,302,1898,1898,302,57,848,

%U 1898,848,57,1,57,302,302,57,1,1,120,120,1191,3228,1191,2416,13644

%N Partitioned 2nd-order Eulerian numbers forming an "Eulerian pyramid" (tetrahedron).

%C For N+1 = i+j+k, let P(N+1;i,j,k) = (N+1-i)*P(N;i-1,j,k) + (N+1-j)*P(N;i,j-1,k) + (N+1-k)*P(N;i,j,k-1), with P(N;i,j,k) invariant upon permutation of the indices i,j,k, also P(N;N,0,0)=1 and P(N;i,j,k) = 0 if i or j or k is negative. The indexing of these values is shown explicitly in the examples.

%C The row sums are the second-order Eulerian numbers, A008517; precisely, Sum_{(j,k)|j+k=N-i} P(N;i,j,k) = <<N+1,i>> = T(N+1,i+1) of A008517. The row sum of row i=N of slice N is (N+1)!. The sum of all entries in slice N is (2*N+1)!!. The edges of the N-th triangular slice of the pyramid are row (N+1) of the first-order Eulerian triangle, A008292.

%e The first few slices of the tetrahedron (and row sums) are:

%e 1 (1); i=0, N=0, (j,k)=(0,0)

%e ------------------------

%e 1 (1); i=0, N=1, (j,k)=(0,0)

%e 1 1 (2); i=1, N=1, (j,k)=(1,0) (0,1)

%e ------------------------

%e 1 (1); i=0, N=2, (j,k)=(0,0)

%e 4 4 (8); i=1, N=2, (j,k)=(1,0) (0,1)

%e 1 4 1 (6); i=2, N=2, (j,k)=(2,0) (1,1) (0,2)

%e ------------------------

%e 1 (1); i=0, N=3, (j,k)=(0,0)

%e 11 11 (22); i=1, N=3, (j,k)=(1,0) (0,1)

%e 11 36 11 (58); i=2, N=3, (j,k)=(2,0) (1,1) (0,2)

%e 1 11 11 1 (24); i=3, N=3, (j,k)=(3,0) (2,1) (1,2) (0,3)

%e ------------------------

%e 1 (1); i=0, N=4, (j,k)=(0,0)

%e 26 26 (52); i=1, N=4, (j,k)=(1,0) (0,1)

%e 66 196 66 (328); i=2, N=4, (j,k)=(2,0) (1,1) (0,2)

%e 26 196 196 26 (444); i=3, N=4, (j,k)=(3,0) (2,1) (1,2) (0,3)

%e 1 26 66 26 1 (120); i=4, N=4, (j,k)=(4,0) (3,1) (2,2) (1,3) (0,4)

%K nonn,tabf

%O 0,6

%A _Gregory Gerard Wojnar_, Nov 13 2018