login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321588
Number of connected nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and distinct rows and columns.
4
1, 1, 1, 9, 29, 181, 1285, 10635, 102355, 1118021, 13637175, 184238115, 2727293893, 43920009785, 764389610843, 14297306352937, 286014489487815, 6093615729757841, 137750602009548533, 3293082026520294529, 83006675263513350581, 2200216851785981586729, 61180266502369886181253
OFFSET
0,4
COMMENTS
A matrix is connected if the positions in each row (or each column) of the nonzero entries form a connected hypergraph.
LINKS
EXAMPLE
The a(4) = 29 matrices:
4 31 13
.
3 21 21 20 12 12 11 110 11 110 101 101 1 10 10 02 011 011 01 01
1 10 01 11 10 01 20 101 02 011 110 011 3 21 12 11 110 101 21 12
.
11 11 10 10 01 01
10 01 11 01 11 10
01 10 01 11 10 11
MATHEMATICA
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], UnsameQ@@prs2mat[#], UnsameQ@@Transpose[prs2mat[#]], Length[csm[Map[Last, GatherBy[#, First], {2}]]]==1]&]], {n, 6}]
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, wf)={prod(j=1, #q, wf(t*q[j]))-1}
Q(m, n, wf=w->2)={my(s=0); forpart(p=m, s+=(-1)^#p*permcount(p)*exp(-sum(t=1, n, (-1)^t*x^t*K(p, t, wf)/t, O(x*x^n))) ); Vec((-1)^m*serchop(serlaplace(s), 1), -n)}
ConnectedMats(M)={my([m, n]=matsize(M), R=matrix(m, n)); for(m=1, m, for(n=1, n, R[m, n] = M[m, n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1, i-1)*binomial(n, j)*R[i, j]*M[m-i, n-j])))); R}
seq(n)={my(R=vectorv(n, m, Q(m, n, w->1/(1 - y^w) + O(y*y^n)))); for(i=2, #R, R[i] -= i*R[i-1]); Vec(1 + vecsum( vecsum( Vec( ConnectedMats( Mat(R))))))} \\ Andrew Howroyd, Jan 24 2024
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 13 2018
EXTENSIONS
a(7) onwards from Andrew Howroyd, Jan 24 2024
STATUS
approved