login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of Product_{1 <= i_1 <= i_2 <= i_3 <= i_4} 1/(1 - x^(i_1*i_2*i_3*i_4)).
3

%I #10 Nov 13 2018 12:50:56

%S 1,1,2,3,6,8,14,19,32,44,67,91,139,186,269,362,518,687,960,1267,1747,

%T 2294,3106,4052,5449,7063,9365,12092,15914,20422,26639,34029,44090,

%U 56075,72108,91303,116802,147264,187210,235182,297562,372346,468777,584553,732803,910744

%N Expansion of Product_{1 <= i_1 <= i_2 <= i_3 <= i_4} 1/(1 - x^(i_1*i_2*i_3*i_4)).

%H Seiichi Manyama, <a href="/A321566/b321566.txt">Table of n, a(n) for n = 0..10000</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F Euler transform of A218320.

%F G.f.: Product_{k>0} 1/(1 - x^k)^A218320(k).

%Y Product_{1 <= i_1 <= i_2 <= ... <= i_b} 1/(1 - x^(i_1 * i_2 * ... * i_b)): A000041 (b=1), A182269 (b=2), A321360 (b=3), this sequence (b=4).

%Y Cf. A066739, A218320, A321567.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Nov 13 2018