login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} (-1)^(n/d+1)*d^7.
8

%I #22 Nov 11 2022 04:34:32

%S 1,127,2188,16255,78126,277876,823544,2080639,4785157,9922002,

%T 19487172,35565940,62748518,104590088,170939688,266321791,410338674,

%U 607714939,893871740,1269938130,1801914272,2474870844,3404825448,4552438132,6103593751,7969061786,10465138360,13386707720,17249876310

%N a(n) = Sum_{d|n} (-1)^(n/d+1)*d^7.

%H Seiichi Manyama, <a href="/A321552/b321552.txt">Table of n, a(n) for n = 1..10000</a>

%H J. W. L. Glaisher, <a href="https://books.google.com/books?id=bLs9AQAAMAAJ&amp;pg=RA1-PA1">On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares</a>, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).

%H <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>.

%F G.f.: Sum_{k>=1} k^7*x^k/(1 + x^k). - _Seiichi Manyama_, Nov 23 2018

%F From _Amiram Eldar_, Nov 11 2022: (Start)

%F Multiplicative with a(2^e) = (63*2^(7*e+1)+1)/127, and a(p^e) = (p^(7*e+7) - 1)/(p^7 - 1) if p > 2.

%F Sum_{k=1..n} a(k) ~ c * n^8, where c = 127*zeta(8)/1024 = 0.124529... . (End)

%t f[p_, e_] := (p^(7*e + 7) - 1)/(p^7 - 1); f[2, e_] := (63*2^(7*e + 1) + 1)/127; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* _Amiram Eldar_, Nov 11 2022 *)

%o (PARI) apply( A321552(n)=sumdiv(n, d, (-1)^(n\d-1)*d^7), [1..30]) \\ _M. F. Hasler_, Nov 26 2018

%Y Sum_{k>=1} k^b*x^k/(1 + x^k): A000593 (b=1), A078306 (b=2), A078307 (b=3), A284900 (b=4), A284926 (b=5), A284927 (b=6), this sequence (b=7), A321553 (b=8), A321554 (b=9), A321555 (b=10), A321556 (b=11), A321557 (b=12).

%Y Cf. A321543 - A321565, A321807 - A321836 for similar sequences.

%Y Cf. A013666.

%K nonn,mult

%O 1,2

%A _N. J. A. Sloane_, Nov 23 2018