%I
%S 1,2047,177148,4196351,48828126,362621956,1977326744,8594130943,
%T 31381236757,99951173922,285311670612,743375186948,1792160394038,
%U 4047587844968,8649804864648,17600780175359,34271896307634,64237391641579,116490258898220,204899955368226,350279478046112
%N a(n) = Sum_{dn} (1)^(d1)*d^11.
%H Seiichi Manyama, <a href="/A321550/b321550.txt">Table of n, a(n) for n = 1..10000</a>
%H J. W. L. Glaisher, <a href="https://books.google.com/books?id=bLs9AQAAMAAJ&pg=RA1PA1">On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares</a>, Quart. J. Math. 38 (1907), 162 (see p. 4 and p. 8).
%H <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>
%F G.f.: Sum_{k>=1} (1)^(k1)*k^11*x^k/(1  x^k).  _Ilya Gutkovskiy_, Dec 24 2018
%o (PARI) apply( a(n)=sumdiv(n, d, (1)^(d1)*d^11), [1..30]) \\ _M. F. Hasler_, Nov 26 2018
%Y Cf. A321543  A321565, A321807  A321836 for similar sequences.
%K sign,mult
%O 1,2
%A _N. J. A. Sloane_, Nov 23 2018
