login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321426
Number of connected labeled fairly cubic graphs on 2n nodes.
3
0, 0, 6, 810, 282660, 195192900, 235439369550, 454833890480970, 1320613138677432600, 5490000743915652564600, 31451199565381549069866750, 240742295353571264522056037250, 2400231508458936741386610203090700, 30511229662020079098420585892148047500
OFFSET
0,3
COMMENTS
Fairly cubic graphs are cubic graphs (A002829) where 2 points have degree 2. All other points have degree 3.
LINKS
N. C. Wormald, Enumeration of labelled graphs II: cubic graphs with a given connectivity, J. Lond Math Soc s2-20 (1979) 1-7, e.g.f. f(x).
FORMULA
a(n) = A321425(n) + n*(2*n-1)*(2*n-2)*A321427(n-2) + 2*n*(2*n-1)*a(n-1). [Wormald eq (2.3)]
a(n) = 3*n*A002829(n) + 2*n*(2*n-1)*a(n-1) + n*(2*n-1)*(2*n-2)*(2*n-3)*a(n-2). - Andrew Howroyd, Nov 09 2018
MATHEMATICA
b[n_] := Sum[Sum[Sum[((-1)^(i+j)(2n)! (2(3n - i - 2j - 3k))!)/ (2^(5n -i - 2j - 4k) 3^(2n - i - 2j - k)(3n - i - 2j - 3k)! i! j! k! (2n - i - 2j - 2k)!), {j, 0, Min[Floor[(3n - i - 3k)/2], Floor[(2n - i - 2k)/2]]}], {k, 0, Min[Floor[(3n - i)/3], Floor[(2n - i)/2]]}], {i, 0, 2n}];
seq[n_] := Module[{v = Table[0, {n+1}]}, For[k = 2, k <= n, k++, v[[k+1]] = 3k b[k] + 2k(2k - 1)v[[k]] + k(2k - 1)(2k - 2)(2k - 3)v[[k-1]]]; v];
seq[13] (* Jean-François Alcover, Nov 22 2018, after Andrew Howroyd *)
PROG
(PARI) \\ here b(n) is A002829
b(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!))));
seq(n)={my(v=vector(n+1)); for(n=2, n, v[n+1] = 3*n*b(n) + 2*n*(2*n-1)*v[n] + n*(2*n-1)*(2*n-2)*(2*n-3)*v[n-1]); v} \\ Andrew Howroyd, Nov 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Nov 09 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Nov 09 2018
STATUS
approved