The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321426 Number of connected labeled fairly cubic graphs on 2n nodes. 3
 0, 0, 6, 810, 282660, 195192900, 235439369550, 454833890480970, 1320613138677432600, 5490000743915652564600, 31451199565381549069866750, 240742295353571264522056037250, 2400231508458936741386610203090700, 30511229662020079098420585892148047500 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Fairly cubic graphs are cubic graphs (A002829) where 2 points have degree 2. All other points have degree 3. LINKS Andrew Howroyd, Table of n, a(n) for n = 0..100 N. C. Wormald, Enumeration of labelled graphs II: cubic graphs with a given connectivity, J. Lond Math Soc s2-20 (1979) 1-7, e.g.f. f(x). FORMULA a(n) = A321425(n) + n*(2*n-1)*(2*n-2)*A321427(n-2) + 2*n*(2*n-1)*a(n-1). [Wormald eq (2.3)] a(n) = 3*n*A002829(n) + 2*n*(2*n-1)*a(n-1) + n*(2*n-1)*(2*n-2)*(2*n-3)*a(n-2). - Andrew Howroyd, Nov 09 2018 MATHEMATICA b[n_] := Sum[Sum[Sum[((-1)^(i+j)(2n)! (2(3n - i - 2j - 3k))!)/ (2^(5n -i - 2j - 4k) 3^(2n - i - 2j - k)(3n - i - 2j - 3k)! i! j! k! (2n - i - 2j - 2k)!), {j, 0, Min[Floor[(3n - i - 3k)/2], Floor[(2n - i - 2k)/2]]}], {k, 0, Min[Floor[(3n - i)/3], Floor[(2n - i)/2]]}], {i, 0, 2n}]; seq[n_] := Module[{v = Table[0, {n+1}]}, For[k = 2, k <= n, k++, v[[k+1]] = 3k b[k] + 2k(2k - 1)v[[k]] + k(2k - 1)(2k - 2)(2k - 3)v[[k-1]]]; v]; seq[13] (* Jean-François Alcover, Nov 22 2018, after Andrew Howroyd *) PROG (PARI) \\ here b(n) is A002829 b(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!)))); seq(n)={my(v=vector(n+1)); for(n=2, n, v[n+1] = 3*n*b(n) + 2*n*(2*n-1)*v[n] + n*(2*n-1)*(2*n-2)*(2*n-3)*v[n-1]); v} \\ Andrew Howroyd, Nov 09 2018 CROSSREFS Cf. A002829, A321425, A321427. Sequence in context: A006114 A341554 A365511 * A281566 A271637 A249126 Adjacent sequences: A321423 A321424 A321425 * A321427 A321428 A321429 KEYWORD nonn AUTHOR R. J. Mathar, Nov 09 2018 EXTENSIONS Terms a(11) and beyond from Andrew Howroyd, Nov 09 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 7 05:42 EDT 2024. Contains 375729 sequences. (Running on oeis4.)