Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 23 2018 03:43:34
%S 0,0,6,630,232260,167712300,207994906350,409639268108070,
%T 1206311009131027800,5069191623021896970600,
%U 29288218834810895163954750,225729928889064072869657010750,2263331356064784471285438421502700,28907890013735339531664032407056442500
%N Number of connected labeled almost cubic graphs on 2n nodes.
%C Almost cubic graphs are cubic graphs (A002829) where 2 points have degree 2 and these 2 points are non-adjacent. All other points have degree 3. They are constructed by removing an edge from the cubic graphs.
%H Andrew Howroyd, <a href="/A321425/b321425.txt">Table of n, a(n) for n = 0..100</a>
%H N. C. Wormald, <a href="https://dx.doi.org/10.1112/jlms/s2-20.1.1">Enumeration of labelled graphs II: cubic graphs with a given connectivity</a>, J. Lond Math Soc s2-20 (1979) 1-7, e.g.f. a(x).
%F a(n) = 3*n*A002829(n). [Wormald eq. (2.1)]
%e There is 1 unlabeled almost cubic graph on 4 nodes (the kite, obtained by removing an edge of the tetrahedron K_4). This has 6 = binomial(4,2) labeled versions obtained by selecting two out of 4 labels for the points of degree 2.
%t terms = 14; egf = HypergeometricPFQ[{1/6, 5/6}, {}, 12x/(x^2 + 8x + 4)^(3/2)] Exp[-Log[1/4 x^2 + 2x + 1]/4 - x/3 + (x^2 + 8x + 4)^(3/2)/(24 x) - 1/(3x) - x^2/24 - 1] + O[x]^terms;
%t CoefficientList[egf, x](2 Range[0, terms-1])! 3 Range[0, terms-1] (* _Jean-François Alcover_, Nov 23 2018, from A002829 *)
%o (PARI) b(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!)))); \\ A002829
%o vector(20, n, n--; 3*n*b(n)) \\ _Michel Marcus_, Nov 10 2018
%Y Cf. A002829, A321426.
%K nonn
%O 0,3
%A _R. J. Mathar_, Nov 09 2018
%E Terms a(11) and beyond from _Andrew Howroyd_, Nov 09 2018