The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321342 Numbers k such that if j is the sum of the first k primes, then the sum of the first j primes is prime. 3
1, 9, 15, 19, 73, 85, 87, 103, 121, 157, 175, 277, 313, 317, 341, 357, 375, 385, 391, 421, 443, 447, 523, 525, 539, 571, 607, 611, 645, 701, 779, 783, 791, 799, 823, 831, 835, 853, 889, 907, 911, 925, 977, 1051, 1075, 1081, 1087, 1095, 1117, 1125, 1135, 1157, 1181, 1187, 1223, 1257, 1305, 1325 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
k is in the sequence if A007504(j) is prime, where j = A007504(k). A007504(j) must be odd to be prime, so j must be even and k must be odd. Therefore all terms are odd. The subsequence of primes is A321343.
LINKS
Daniel Suteu, Perl program
EXAMPLE
A007504(1) = 2 and A007504(2) = 5, a prime therefore 1 is a term.
A007504(3) = 10 and A007504(10) = 129, not prime, therefore 3 is not a term.
A007504(9) = 100 and A007504(100) = 24133, a prime so 9 is a term.
MAPLE
N:=2000:
for n from 1 to N by 2 do
X:=add(ithprime(r), r=1..n);
Y:=add(ithprime(k), k=1..X);
if isprime(Y) then print(n);
end if:
end do:
MATHEMATICA
primeSum[n_] := Sum[Prime[i], {i, n}]; Select[Range[300], PrimeQ[primeSum[primeSum[#]]] &] (* Amiram Eldar, Nov 07 2018 *)
PROG
(PARI) sfp(n) = sum(k=1, n, prime(k)); \\ A007504
isok(n) = isprime(sfp(sfp(n))); \\ Michel Marcus, Nov 08 2018
CROSSREFS
Sequence in context: A058211 A038599 A330438 * A338599 A333312 A255763
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 19:00 EDT 2024. Contains 372720 sequences. (Running on oeis4.)