login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{i>=1, j>=1, k>=1, l>=1} (1 + x^(i*j*k*l))/(1 - x^(i*j*k*l)).
2

%I #21 Sep 08 2022 08:46:23

%S 1,2,10,26,86,210,594,1394,3530,8006,18842,41258,92190,195714,419538,

%T 867050,1797568,3625758,7311382,14431294,28416514,55010142,106101558,

%U 201814518,382213566,715473554,1333083950,2459265058,4515151234,8218572030,14888270366,26766878302

%N Expansion of Product_{i>=1, j>=1, k>=1, l>=1} (1 + x^(i*j*k*l))/(1 - x^(i*j*k*l)).

%C Convolution of the sequences A280486 and A280487.

%H Seiichi Manyama, <a href="/A321240/b321240.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A007426(k).

%t With[{nmax=50}, CoefficientList[Series[Product[(1 + x^(i*j*k*l))/(1 - x^(i*j*k*l)), {i,1,nmax}, {j,1,nmax/i}, {k,1,nmax/i/j}, {l,1,nmax/i/j/k}], {x,0,nmax}], x]] (* _G. C. Greubel_, Nov 01 2018 *)

%o (PARI) m=50; x='x+O('x^m); Vec(prod(k=1,m, ((1+x^k)/(1-x^k))^ sumdiv(k, d, numdiv(k/d)*numdiv(d)))) \\ _G. C. Greubel_, Nov 01 2018

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(&*[(&*[(&*[(1+x^(i*j*k*l))/(1-x^(i*j*k*l)): i in [1..m]]): j in [1..m]]): k in [1..m]]): l in [1..m]]))); // _G. C. Greubel_, Nov 01 2018

%Y Cf. A007426, A015128, A280486, A280487, A301554, A305050.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Nov 01 2018