%I #4 Nov 01 2018 11:38:00
%S 1,0,2,3,8,15,42,94,256,656,1807
%N Number of non-isomorphic connected weight-n multiset partitions with no singletons and multiset density -1.
%C The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
%C The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
%e Non-isomorphic representatives of the a(2) = 2 through a(5) = 15 multiset partitions:
%e {{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,1,1,1,1}}
%e {{1,2}} {{1,2,2}} {{1,1,2,2}} {{1,1,2,2,2}}
%e {{1,2,3}} {{1,2,2,2}} {{1,2,2,2,2}}
%e {{1,2,3,3}} {{1,2,2,3,3}}
%e {{1,2,3,4}} {{1,2,3,3,3}}
%e {{1,1},{1,1}} {{1,2,3,4,4}}
%e {{1,2},{2,2}} {{1,2,3,4,5}}
%e {{1,3},{2,3}} {{1,1},{1,1,1}}
%e {{1,1},{1,2,2}}
%e {{1,2},{2,2,2}}
%e {{1,2},{2,3,3}}
%e {{1,3},{2,3,3}}
%e {{1,4},{2,3,4}}
%e {{2,2},{1,2,2}}
%e {{3,3},{1,2,3}}
%Y Cf. A000272, A007716, A007718, A030019, A052888, A134954, A304867, A304887, A317672, A318697, A321155, A321228, A321229.
%K nonn,more
%O 0,3
%A _Gus Wiseman_, Oct 31 2018