login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Minimum number of monochromatic Schur triples over all 2-colorings of [n].
1

%I #59 Mar 08 2022 15:51:57

%S 0,0,0,0,1,1,2,3,4,6,7,9,11,13,15,18,20,23,26,29,33,36,40,44,48,52,57,

%T 61,66,71,76,82,87,93,99,105,111,118,124,131,138,145,153,160,168,176,

%U 184,192,201,209,218,227,236,246,255,265,275,285,295,306,316,327,338

%N Minimum number of monochromatic Schur triples over all 2-colorings of [n].

%C A Schur triple is an integer triple (x,y,x+y). A 2-coloring on [n] = {1,...,n} is a surjective map [n] --> {Red, Blue}. A triple (x,y,z) is monochromatic if the set {x,y,z} is mapped to one color. a(n) is exactly the minimum number of monochromatic Schur triples over all possible 2-colorings of [n]. The "optimal" coloring for all n (i.e. the coloring that produces the minimum number of monochromatic Schur triples) was shown by Robertson and Zeilberger in 1998 and later with a greedy algorithm by Thanatipanonda in 2009 (see the example for the optimal coloring of [11]). The exact formula for a(n) is computed based on this optimal coloring. One might notice in the literature that there is an additional assumption x<=y. We do not impose this constraint.

%H Elaine Wong, <a href="/A321195/b321195.txt">Table of n, a(n) for n = 1..1000</a>

%H B. Datskovsky, <a href="https://doi.org/10.1016/S0196-8858(03)00010-1">On the number of monochromatic Schur triples</a>, Advances in Applied Math, 31 (2003), 193-198.

%H C. Koutschan and E. Wong, <a href="https://doi.org/10.1007/978-3-030-44559-1_13">Exact Lower Bounds for Monochromatic Schur Triples and Generalizations</a>, In: Pillwein V., Schneider C. (eds) Algorithmic Combinatorics: Enumerative Combinatorics, Special Functions and Computer Algebra. Texts & Monographs in Symbolic Computation (A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria), Springer, pp.223-248 (2020).

%H A. Robertson and D. Zeilberger, <a href="https://doi.org/10.37236/1357">A 2-coloring of [1,n] can have n^2/22+O(n) monochromatic Schur triples, but not less!</a>, The Electronic Journal of Combinatorics, 5 #R19 (1998).

%H T. Schoen, <a href="https://doi.org/10.1006/eujc.1999.0297">The number of monochromatic Schur Triples</a>, European Journal of Combinatorics, 20 (1999), 855-866.

%H T. Thanatipanonda, <a href="https://doi.org/10.37236/103">On the Monochromatic Schur Triples Type Problem</a>, The Electronic Journal of Combinatorics, 16(1) #R14 (2009).

%H T. Thanatipanonda and E. Wong, <a href="https://doi.org/10.37236/6490">On the Minimum Number of Monochromatic Generalized Schur Triples</a>, The Electronic Journal of Combinatorics, 24(2), P.2.20 (2017).

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,0,0,0,0,0,1,-2,1).

%F a(n) = floor((n^2 - 4*n + 6)/11).

%F G.f.: (-x^5 + x^6 - x^7 - x^10 + x^11 - x^12)/ (-1 + 2*x - x^2 + x^11 - 2*x^12 + x^13).

%F a(n) = 2*a(n-1) - a(n-2) + a(n-11) - 2*a(n-12) + a(n-13) for n > 13. - _Colin Barker_, Dec 18 2018

%e On the interval [11], the optimal coloring is R,R,R,R,B,B,B,B,B,B,R, which produces a minimum 7 monochromatic triples (x,y,x+y): (1,1,2), (1,2,3), (2,1,3), (1,3,4), (2,2,4), (3,1,4), (5,5,10).

%p seq(floor((n^2-4*n+6)/11), n=1..1000);

%t Table[Floor[(n^2-4n+6)/11], {n,1000}]

%o (GAP) List([1..100],n->Int((n^2-4*n+6)/11)); # _Muniru A Asiru_, Dec 19 2018

%K nonn

%O 1,7

%A _Elaine Wong_, Dec 18 2018