login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^tau_n(k), where tau_n(k) = number of ordered n-factorizations of k.
2

%I #10 Nov 01 2018 12:21:50

%S 1,1,3,7,29,71,336,932,4593,13690,69708,222718,1163734,3902016,

%T 20825927,73229397,397806717,1452193925,8016518379,30328368519,

%U 169781766056,662143701506,3755514158949,15071604241851,86496856963200,356063096545571,2066351471542036

%N a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^tau_n(k), where tau_n(k) = number of ordered n-factorizations of k.

%H Seiichi Manyama, <a href="/A321191/b321191.txt">Table of n, a(n) for n = 0..500</a>

%F a(n) = [x^n] Product_{k_1>=1, k_2>=1, ..., k_n>=1} 1/(1 - x^(k_1*k_2*...*k_n)).

%t tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[#, k-1] & /@ Divisors[n]); nmax = 30; Table[SeriesCoefficient[Product[1/(1 - x^k)^tau[k, n], {k, 1, n}], {x, 0, n}], {n, 0, nmax}] (* _Vaclav Kotesovec_, Oct 29 2018 *)

%Y Cf. A000041, A006171, A077592, A174465, A280487, A321192.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Oct 29 2018