%I #7 Aug 01 2019 00:29:31
%S 1,0,1,1,3,2,7,6,15,15,30
%N Number of integer partitions of n that are the vertex-degrees of some multiset of nonempty sets, none of which is a proper subset of any other, with no singletons.
%e The a(2) = 1 through a(8) = 15 partitions:
%e (11) (111) (22) (2111) (33) (2221) (44)
%e (211) (11111) (222) (3211) (332)
%e (1111) (321) (22111) (422)
%e (2211) (31111) (431)
%e (3111) (211111) (2222)
%e (21111) (1111111) (3221)
%e (111111) (3311)
%e (4211)
%e (22211)
%e (32111)
%e (41111)
%e (221111)
%e (311111)
%e (2111111)
%e (11111111)
%e The a(6) = 7 integer partitions together with a realizing multi-antichain of each (the parts of the partition count the appearances of each vertex in the multi-antichain):
%e (33): {{1,2},{1,2},{1,2}}
%e (321): {{1,2},{1,2},{1,3}}
%e (3111): {{1,2},{1,3},{1,4}}
%e (222): {{1,2,3},{1,2,3}}
%e (2211): {{1,2,3},{1,2,4}}
%e (21111): {{1,2},{1,3,4,5}}
%e (111111): {{1,2,3,4,5,6}}
%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t multanti[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,Min@@Length/@#>1,stableQ[#]]&];
%t strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
%t Table[Length[Select[strnorm[n],multanti[#]!={}&]],{n,8}]
%Y Cf. A000070, A000569, A006126, A096827, A147878, A209816, A283877, A318360, A319719, A319721, A320799, A320921, A321176.
%K nonn,more
%O 0,5
%A _Gus Wiseman_, Oct 29 2018