login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} sigma_n(d).
10

%I #26 Jul 29 2023 06:43:06

%S 1,6,29,291,3127,48246,823545,16909060,387459858,10019533302,

%T 285311670613,8920489178073,302875106592255,11113363271736486,

%U 437893951444713443,18447307036548136965,827240261886336764179,39346708467688595378892,1978419655660313589123981

%N a(n) = Sum_{d|n} sigma_n(d).

%H Seiichi Manyama, <a href="/A321141/b321141.txt">Table of n, a(n) for n = 1..386</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F a(n) = [x^n] Sum_{k>=1} sigma_n(k)*x^k/(1 - x^k).

%F a(n) = Sum_{d|n} d^n*tau(n/d).

%F a(n) ~ n^n. - _Vaclav Kotesovec_, Feb 16 2020

%p with(numtheory): seq(coeff(series(add(sigma[n](k)*x^k/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 20); # _Muniru A Asiru_, Oct 28 2018

%t Table[Sum[DivisorSigma[n, d], {d, Divisors[n]}] , {n, 19}]

%t Table[SeriesCoefficient[Sum[DivisorSigma[n, k] x^k/(1 - x^k), {k, 1, n}], {x, 0, n}], {n, 19}]

%o (PARI) a(n) = sumdiv(n, d, sigma(d, n)); \\ _Michel Marcus_, Oct 28 2018

%o (Python)

%o from sympy import divisor_sigma, divisors

%o def A321141(n):

%o return sum(divisor_sigma(d,0)*(n//d)**n for d in divisors(n,generator=True)) # _Chai Wah Wu_, Feb 15 2020

%o (Magma) [&+[DivisorSigma(n, d):d in Divisors(n)]:n in [1..20]]; // _Vincenzo Librandi_, Feb 16 2020

%Y Cf. A000005, A007429, A007433, A023887, A319194, A320940, A321140.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Oct 28 2018