Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Dec 01 2018 08:59:32
%S 3,9,4,3,3,7,5,6,7,2,9,7,4,0,6,4,4,1,1,2,7,2,8,7,1,9,5,1,2,5,4,8,9,3,
%T 6,3,9,1,1,9,0,0,4,3,7,8,1,7,5,3,1,7,1,9,0,0,4,6,5,0,5,8,1,6,2,0,9,9,
%U 4,4,1,8,0,7,5,7,3,3,3,3,6,4,2,3,4,2,8
%N Decimal expansion of (3 + sqrt(3))/12.
%C The smallest weight in Holladay-Sard's quadrature formula for semi-infinite integrals.
%D Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967.
%H John C. Holladay, <a href="https://doi.org/10.1090/S0025-5718-1957-0093894-6">A smoothest curve approximation</a>, Math. Comp. Vol. 11 (1957), 233-243.
%H Leroy F. Meyers and Arthur Sard, <a href="https://doi.org/10.1002/sapm1950291118">Best approximate integration formulas</a>, J. Math. Phys. Vol. 29 (1950), 118-123.
%H Arthur Sard, <a href="https://doi.org/10.2307/2372095">Best approximate integration formulas; best approximation formulas</a>, American Journal of Mathematics Vol. 71 (1949), 80-91.
%H Frans Schurer, <a href="https://research.tue.nl/en/publications/on-natural-cubic-splines-with-an-application-to-numerical-integra">On natural cubic splines, with an application to numerical integration formulae</a>, EUT report. WSK, Dept. of Mathematics and Computing Science Vol. 70-WSK-04 (1970), 1-32.
%F Equals lim_{n->infinity} A321118(0,n)/A321119(n).
%F Irrational number represented by the periodic continued fraction [0, 2, 1, 1; [6, 2]].
%F Largest real root of 1 - 12*x + 24*x^2.
%e 0.3943375672974064411272871951...
%p Digits := 1000; evalf((3 + sqrt(3))/12);
%t RealDigits[(3 + Sqrt[3])/12, 10, 100][[1]]
%o (PARI) (3 + sqrt(3))/12
%Y Cf. A020805, A165663.
%Y Cf. A321118, A321119.
%K nonn,easy,cons
%O 0,1
%A _Franck Maminirina Ramaharo_, Nov 09 2018