Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Aug 19 2019 10:13:47
%S 4,4,10,4,0,9,5,8,7,7,3,9,7,4,1,8,10,5,10,8,10,2,5,6,10,10,3,10,2,2,1,
%T 6,6,5,7,10,0,6,9,8,3,1,6,5,3,1,9,0,5,8,8,10,4,8,9,1,9,7,1,2,1,0,5,0,
%U 2,9,1,5,2,1,3,1,7,10,3,5,0,4,10,5,1,2,10,2,1,3,0
%N Digits of one of the two 11-adic integers sqrt(5).
%C This square root of 5 in the 11-adic field ends with digit 4. The other, A321079, ends with digit 7.
%H Seiichi Manyama, <a href="/A321078/b321078.txt">Table of n, a(n) for n = 0..10000</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a>
%F a(n) = (A321076(n+1) - A321076(n))/11^n.
%F For n > 0, a(n) = 10 - A321079(n).
%e ...8960A7566122A3AA652A8A5A8147937785904A44.
%o (PARI) a(n) = truncate(sqrt(5+O(11^(n+1))))\11^n
%Y Cf. A321076, A321079.
%K nonn,base
%O 0,1
%A _Jianing Song_, Oct 27 2018