%I
%S 6896,8390656,24461443072,71328837140480,222290692443996160,
%T 702177183940808278016,2242238966451009797226496,
%U 7190233079434838637629407232,23116065100534863987420040265728
%N Number of 7Xn 0..5 arrays with no element x(i,j) adjacent to itself or value 5x(i,j) horizontally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order (unlabelled 6colorings with no clashing color pairs)
%C Row 7 of A233256
%H R. H. Hardin, <a href="/A233262/b233262.txt">Table of n, a(n) for n = 1..209</a>
%H R. H. Hardin, <a href="/A233262/a233262.txt">Empirical recurrence of order 28</a>
%F Empirical recurrence of order 28 (see link above)
%e Some solutions for n=2
%e ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
%e ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
%e ..0..2....0..2....0..1....0..2....0..1....0..1....0..2....0..2....0..2....0..2
%e ..0..1....5..4....5..4....0..4....2..1....0..1....5..2....1..0....4..5....4..0
%e ..0..4....0..4....0..2....2..4....2..0....2..5....1..5....1..3....4..3....1..2
%e ..2..5....2..4....1..5....3..4....4..3....3..4....4..0....4..2....0..4....1..5
%e ..4..0....2..1....3..4....5..2....0..3....0..3....3..4....1..0....5..1....1..2
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 06 2013
