login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of divisors of n which are greater than 3.
14

%I #31 Jan 08 2024 01:36:26

%S 0,0,0,1,1,1,1,2,1,2,1,3,1,2,2,3,1,3,1,4,2,2,1,5,2,2,2,4,1,5,1,4,2,2,

%T 3,6,1,2,2,6,1,5,1,4,4,2,1,7,2,4,2,4,1,5,3,6,2,2,1,9,1,2,4,5,3,5,1,4,

%U 2,6,1,9,1,2,4,4,3,5,1,8,3,2,1,9,3,2,2,6,1,9,3,4,2,2

%N Number of divisors of n which are greater than 3.

%D Marjorie Senechal, "Introduction to lattice geometry." In M. Waldschmidt et al., eds., From Number Theory to Physics, pp. 476-495. Springer, Berlin, Heidelberg, 1992. See Cor. 3.7.

%H Seiichi Manyama, <a href="/A321014/b321014.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f.: Sum_{k>=4} x^k/(1 - x^k). - _Ilya Gutkovskiy_, Nov 06 2018

%F a(n) = Sum_{d|n, d>3} 1. - _Wesley Ivan Hurt_, Apr 28 2020

%F G.f.: Sum_{k>=1} x^(4*k)/(1 - x^k). - _Seiichi Manyama_, Jan 07 2023

%F Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 17/6), where gamma is Euler's constant (A001620). - _Amiram Eldar_, Jan 08 2024

%p d2:=proc(n) local c;

%p if n <= 3 then return(0); fi;

%p c:=NumberTheory[tau](n)-1;

%p if (n mod 2)=0 then c:=c-1; fi;

%p if (n mod 3)=0 then c:=c-1; fi; c; end;

%p [seq(d2(n),n=1..120)];

%t nmax = 94; Rest[CoefficientList[Series[Sum[x^k/(1 - x^k), {k, 4, nmax}], {x, 0, nmax}], x]] (* _Ilya Gutkovskiy_, Nov 07 2018 *)

%o (PARI) a(n) = sumdiv(n, d, d>3); \\ _Michel Marcus_, Nov 06 2018

%o (PARI) a(n) = numdiv(n) - 3 + !!(n%2) + !!(n%3) \\ _David A. Corneth_, Nov 07 2018

%o (PARI) my(N=100, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1-x^k)))) \\ _Seiichi Manyama_, Jan 07 2023

%Y Cf. A000005, A001620, A321015.

%Y A072527 is a shifted version.

%Y Column k=4 of A135539.

%K nonn,easy

%O 1,8

%A _N. J. A. Sloane_, Nov 04 2018