Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Oct 25 2018 16:05:23
%S 0,1,3,24,101,862,4743,47216,322039,3744368,30517747,409498400,
%T 3884904379,59360223088,642766195887,11046815693568,134468538125519,
%U 2571506053105408,34764547687430955,732881798335913984,10895866774781276947,251184536044504689152
%N Number of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value of two.
%H Alois P. Heinz, <a href="/A320976/b320976.txt">Table of n, a(n) for n = 2..464</a>
%F a(n) = A262126(n) - A000111(n).
%p b:= proc(u, o, c) option remember; `if`(c<0 or c>2, 0, `if`(u+o=0,
%p x^c, (p-> add(coeff(p, x, i)*x^max(i, c), i=0..2))(add(
%p b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))
%p end:
%p a:= n-> coeff(add(b(j-1, n-j, 0), j=1..n), x, 2):
%p seq(a(n), n=2..30);
%Y Column k=2 of A262125.
%Y Cf. A000111, A262126.
%K nonn
%O 2,3
%A _Alois P. Heinz_, Oct 25 2018