Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Dec 10 2023 17:23:51
%S 3,-9,41,-186,845,-3844,17510,-79865,364741,-1667859,7636046,
%T -35002493,160633658,-738017016,3394477491,-15629323441,72036344133,
%U -332346150886,1534759151873,-7093873005004,32817327856690,-151943731458257,704053152985509,-3264786419847751
%N Sum of n-th powers of the roots of x^3 + 9*x^2 + 20*x - 1.
%C In general, for integer h, k let
%C X = (sin^(h+k)(2*Pi/7))/(sin^(h)(4*Pi/7)*sin^(k)(8*Pi/7)),
%C Y = (sin^(h+k)(4*Pi/7))/(sin^(h)(8*Pi/7)*sin^(k)(2*Pi/7)),
%C Z = (sin^(h+k)(8*Pi/7))/(sin^(h)(2*Pi/7)*sin^(k)(4*Pi/7)).
%C then X, Y, Z are the roots of a monic equation
%C t^3 + a*t^2 + b*t + c = 0
%C where a, b, c are integers and c = 1 or -1.
%C Then X^n + Y^n + Z^n , n = 0, 1, 2, ... is an integer sequence.
%C Instances of such sequences with (h,k) values:
%C (-3,0), (0,3), (3,-3): gives A274663;
%C (-3,3), (0,-3): give A274664;
%C (-2,0), (0,2), (2,-2): give A198636;
%C (-2,-3), (-1,-2), (2,-1), (3,-1): give A274032;
%C (-1,-1), (-1,2): give A215076;
%C (-1,0), (0,1), (1,-1): give A094648;
%C (-1,1), (0,-1), (1,0): give A274975;
%C (1,1), (-2,1), (1,-2): give A274220;
%C (1,2), (-3,1), (2,-3: give A274075;
%C (1,3): this sequence.
%H Colin Barker, <a href="/A320918/b320918.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-9,-20,1).
%F a(n) = ((sin^4(2*Pi/7))/(sin(4*Pi/7)*sin^3(8*Pi/7)))^n
%F + ((sin^4(4*Pi/7))/(sin(8*Pi/7)*sin^3(2*Pi/7)))^n
%F + ((sin^4(8*Pi/7))/(sin(2*Pi/7)*sin^3(4*Pi/7)))^n.
%F a(n) = -9*a(n-1) - 20*a(n-2) + a(n-3) for n>2.
%F G.f.: (3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3). - _Colin Barker_, Dec 09 2018
%p a := proc(n) option remember; if n < 3 then [3, -9, 41][n+1] else
%p -9*a(n-1) - 20*a(n-2) + a(n-3) fi end: seq(a(n), n=0..32); # _Peter Luschny_, Oct 25 2018
%t CoefficientList[Series[(3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) , {x, 0, 50}], x] (* _Amiram Eldar_, Dec 09 2018 *)
%t LinearRecurrence[{-9,-20,1},{3,-9,41},30] (* _Harvey P. Dale_, Dec 10 2023 *)
%o (PARI) polsym(x^3 + 9*x^2 + 20*x - 1, 25) \\ _Joerg Arndt_, Oct 24 2018
%o (PARI) Vec((3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) + O(x^30)) \\ _Colin Barker_, Dec 09 2018
%Y Cf. A248417, A274032, A274075.
%K sign,easy
%O 0,1
%A _Kai Wang_, Oct 24 2018