login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} k^3 * tau(k), where tau is A000005.
5

%I #15 Nov 08 2018 03:23:19

%S 1,17,71,263,513,1377,2063,4111,6298,10298,12960,23328,27722,38698,

%T 52198,72678,82504,117496,131214,179214,216258,258850,283184,393776,

%U 440651,510955,589687,721399,770177,986177,1045759,1242367,1386115,1543331,1714831,2134735

%N a(n) = Sum_{k=1..n} k^3 * tau(k), where tau is A000005.

%C In general, for m>=0, Sum_{k=1..n} k^m * tau(k) ~ n^(m+1) * ((log(n) + 2*gamma)/(m+1) - 1/(m+1)^2), where gamma is the Euler-Mascheroni constant A001620.

%H Vaclav Kotesovec, <a href="/A320895/b320895.txt">Table of n, a(n) for n = 1..10000</a>

%H Vaclav Kotesovec, <a href="/A320895/a320895.jpg">Graph - The asymptotic ratio (1000000 terms)</a>

%F a(n) ~ n^4 * (log(n) + 2*gamma - 1/4)/4, where gamma is the Euler-Mascheroni constant A001620.

%F a(n) = Sum_{k=1..n} (k^3 / 4) * floor(n/k)^2 * floor(1 + n/k)^2. - _Daniel Suteu_, Nov 07 2018

%t Accumulate[Table[k^3*DivisorSigma[0, k], {k, 1, 50}]]

%o (PARI) a(n) = sum(k=1, n, k^3*numdiv(k)); \\ _Michel Marcus_, Oct 23 2018

%Y Cf. A000005, A006218, A143127, A319085.

%K nonn

%O 1,2

%A _Vaclav Kotesovec_, Oct 23 2018