Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 08 2022 08:46:23
%S 4,4096,4194304,4294967296,4398046511104,4503599627370496,
%T 4611686018427387904,4722366482869645213696,4835703278458516698824704,
%U 4951760157141521099596496896,40564819207303340847894502572032,41538374868278621028243970633760768
%N Powers of 2 with initial digit 4.
%C Differs from A067482 first at n = 11.
%H Muniru A Asiru, <a href="/A320860/b320860.txt">Table of n, a(n) for n = 1..320</a>
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>
%p select(x->"4"=""||x[1],[2^n$n=0..150])[];
%t Select[2^Range[160], First[IntegerDigits[#]] == 4 &] (* _G. C. Greubel_, Oct 27 2018 *)
%o (GAP) Filtered(List([0..150],n->2^n),i->ListOfDigits(i)[1]=4);
%o (PARI) select(x->(digits(x)[1]==4), vector(200, n, 2^n)) \\ _Michel Marcus_, Oct 26 2018
%o (Magma) [2^n: n in [1..160] | Intseq(2^n)[#Intseq(2^n)] eq 4]; // _G. C. Greubel_, Oct 27 2018
%Y Cf. A000079 (Powers of 2), A008952 (leading digit of 2^n), A217397 (numbers starting with 4).
%Y Powers of 2 with initial digit k, (k = 1..4): A067488, A067480, A320859, this sequence.
%K base,nonn
%O 1,1
%A _Muniru A Asiru_, Oct 22 2018