login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 5*n^2 - 5*n + 13.
1

%I #16 Aug 22 2021 17:31:22

%S 13,23,43,73,113,163,223,293,373,463,563,673,1063,1213,1373,1543,1723,

%T 1913,2113,2543,3793,4073,4363,4663,4973,5623,6673,7043,8623,9043,

%U 9473,12263,12763,14323,15413,15973,17123,17713,18313,19543,20173,22123,23473,26293

%N Primes of the form 5*n^2 - 5*n + 13.

%C The first 12 numbers of the form 5*n^2 - 5*n + 13 (n=1 to 12) are primes.

%H Harvey P. Dale, <a href="/A320752/b320752.txt">Table of n, a(n) for n = 1..1000</a>

%p select(isprime,[seq(5*n^2-5*n+13,n=1..75)]); # _Muniru A Asiru_, Oct 21 2018

%t Select[Table[5n^2-5n+13,{n,80}],PrimeQ] (* _Harvey P. Dale_, Aug 22 2021 *)

%o (PARI) terms(n) = my(i=0); for(k=1, oo, my(x=5*k^2-5*k+13); if(ispseudoprime(x), print1(x, ", "); i++); if(i==n, break))

%o /* Print initial 50 terms as follows */

%o terms(50) \\ _Felix Fröhlich_, Oct 20 2018

%o (GAP) Filtered(List([1..75],n->5*n^2-5*n+13),IsPrime); # _Muniru A Asiru_, Oct 21 2018

%Y Cf. A090562.

%K nonn

%O 1,1

%A _Arashdeep Singh_, Oct 20 2018

%E More terms from _Felix Fröhlich_, Oct 20 2018